首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The paired-domination number of G, denoted by , is the minimum cardinality of a paired-dominating set of G. In [1], the authors gave tight bounds for paired-dominating sets of generalized claw-free graphs. Yet, the critical cases are not claws but subdivided stars. We here give a bound for graphs containing no induced P 5, which seems to be the critical case.  相似文献   

2.
A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The paired-domination number of G, denoted by γ pr(G), is the minimum cardinality of a paired-dominating set of G. In [Dorbec P, Gravier S, Henning MA, J Comb Optim 14(1):1–7, 2007], the authors gave tight bounds for paired-dominating sets of generalized claw-free graphs. Yet, the critical cases are not claws but subdivided stars. We here give a bound for graphs containing no induced subdivided stars, depending on the size of the star.  相似文献   

3.
In this paper, we continue the study of paired-domination in graphs introduced by Haynes and Slater [T.W. Haynes, P.J. Slater, Paired-domination in graphs, Networks 32 (1998), 199–206]. A paired-dominating set of a graph G with no isolated vertex is a dominating set S of vertices whose induced subgraph has a perfect matching. We consider paired-dominating sets which are also locating sets, that is distinct vertices of G are dominated by distinct subsets of the paired-dominating set. We consider three variations of sets which are paired-dominating and locating sets and investigate their properties.  相似文献   

4.
A graph is said to be k-variegated if its vertex set can be partitioned into k equal parts such that each vertex is adjacent to exactly one vertex from every other part not containing it. We prove that a graph G on 2n vertices is 2-variegated if and only if there exists a set S of n independent edges in G such that no cycle in G contains an odd number of edges from S. We also characterize 3-variegated graphs.  相似文献   

5.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

6.
A graph G is called distance-regularized if each vertex of G admits an intersection array. It is known that every distance-regularized graph is either distance-regular (DR) or distance-biregular (DBR). Note that DBR means that the graph is bipartite and the vertices in the same color class have the same intersection array. A (k, g)-graph is a k-regular graph with girth g and with the minimum possible number of vertices consistent with these properties. Biggs proved that, if the line graph L(G) is distance-transitive, then G is either K1,n or a (k, g)-graph. This result is generalized to DR graphs by showing that the following are equivalent: (1) L(G) is DR and GK1,n for n ≥ 2, (2) G and L(G) are both DR, (3) subdivision graph S(G) is DBR, and (4) G is a (k, g)-graph. This result is used to show that a graph S is a DBR graph with 2-valent vertices iff S = K2,′ or S is the subdivision graph of a (k, g)-graph. Let G(2) be the graph with vertex set that of G and two vertices adjacent if at distance two in G. It is shown that for a DBR graph G, G(2) is two DR graphs. It is proved that a DR graph H without triangles can be obtained as a component of G(2) if and only if it is a (k, g)-graph with g ≥ 4.  相似文献   

7.
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number, denoted by γ pr (G), is the minimum cardinality of a paired-dominating set in G. In this paper we investigate the paired-domination number in claw-free graphs. Specifically, we show that γ pr (G) ≤ (3n ? 1)/5 if G is a connected claw-free graph of order n with minimum degree at least three and that this bound is sharp.  相似文献   

8.
A graph chordal if it does not contain any cycle of length greater than three as an induced subgraph. A set of S of vertices of a graph G = (V,E) is independent if not two vertices in S are adjacent, and is dominating if every vertex in V?S is adjacent to some vertex in S. We present a linear algorithm to locate a minimum weight independent dominating set in a chordal graph with 0–1 vertex weights.  相似文献   

9.
Given a graph G, the m-step graph of G, denoted by S m (G), has the same vertex set as G and an edge between two distinct vertices u and v if there is a walk of length m from u to v. The line graph of G, denoted by L(G), is a graph such that the vertex set of L(G) is the edge set of G and two vertices u and v of L(G) are adjacent if the edges corresponding to u and v share a common end vertex in G. We characterize connected graphs G such that S m (G) and L(G) are isomorphic.  相似文献   

10.
Locating and total dominating sets in trees   总被引:1,自引:0,他引:1  
A set S of vertices in a graph G=(V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.  相似文献   

11.
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination vertex removal stable if the removal of an arbitrary vertex leaves the total domination number unchanged. On the other hand, a graph is total domination vertex removal changing if the removal of an arbitrary vertex changes the total domination number. In this paper, we study total domination vertex removal changing and stable graphs.  相似文献   

12.
A set S of vertices in a graph G is called a paired-dominating set if it dominates V and 〈S〉 contains at least one perfect matching. We characterize the set of vertices of a tree that are contained in all minimum paired-dominating sets of the tree.  相似文献   

13.
《Discrete Mathematics》1986,62(3):261-270
Let G be a graph triangularly imbedded into a surface S, G(m) is the graph constructed from G by replacing each vertex x by m vertices (xx,0), (x, 1), ..., (x, m − 1) and joining two vertices (x, i) and (y, j) by an edge if and only if x and y are joined in G. The main result is that the construction of G(m) is possible whenever n is an odd prime and a well separating cycle (mod m) can be determined.  相似文献   

14.
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. Two vertices of G are said to be dotted (identified) if they are combined to form one vertex whose open neighborhood is the union of their neighborhoods minus themselves. We note that dotting any pair of vertices cannot increase the total domination number. Further we show it can decrease the total domination number by at most 2. A graph is total domination dot-stable if dotting any pair of adjacent vertices leaves the total domination number unchanged. We characterize the total domination dot-stable graphs and give a sharp upper bound on their total domination number. We also characterize the graphs attaining this bound.  相似文献   

15.
A set S of vertices in a graph G is said to be an edge-dominating set if every edge in G is incident with a vertex in S. A cycle in G is said to be a dominating cycle if its vertex set is an edge-dominating set. Nash-Williams [Edge-disjoint hamiltonian circuits in graphs with vertices of large valency, Studies in Pure Mathematics, Academic Press, London, 1971, pp. 157-183] has proved that every longest cycle in a 2-connected graph of order n and minimum degree at least is a dominating cycle. In this paper, we prove that for a prescribed positive integer k, under the same minimum degree condition, if n is sufficiently large and if we take k disjoint cycles so that they contain as many vertices as possible, then these cycles form an edge-dominating set. Nash-Williams’ Theorem corresponds to the case of k=1 of this result.  相似文献   

16.
17.
Let G be a finite group. The degree(vertex) graph Γ(G) attached to G is a character degree graph.Its vertices are the degrees of the nonlinear irreducible complex characters of G, and different vertices m, n are adjacent if the greatest common divisor(m, n) 1. In this paper, we classify all graphs with four vertices that occur as Γ(G) for nonsolvable groups G.  相似文献   

18.
A set S of vertices of a graph G is a total dominating set, if every vertex of V(G) is adjacent to some vertex in S. The total domination number of G, denoted by γt(G), is the minimum cardinality of a total dominating set of G. We prove that, if G is a graph of order n with minimum degree at least 3, then γt(G) ≤ 7n/13. © 2000 John Wiley & Sons, Inc. J Graph Theory 34:9–19, 2000  相似文献   

19.
Let G=(X,Y;E) be a balanced bipartite graph of order 2n. The path-cover numberpc(H) of a graph H is the minimum number of vertex-disjoint paths that use up all the vertices of H. SV(G) is called a balanced set of G if |SX|=|SY|. In this paper, we will give some sufficient conditions for a balanced bipartite graph G satisfying that for every balanced set S, there is a bi-cycle of every length from |S|+2pc(〈S〉) up to 2n through S.  相似文献   

20.
The graph G is a covering of the graph H if there exists a (projection) map p from the vertex set of G to the vertex set of H which induces a one-to-one correspondence between the vertices adjacent to v in G and the vertices adjacent to p(v) in H, for every vertex v of G. We show that for any two finite regular graphs G and H of the same degree, there exists a finite graph K that is simultaneously a covering both of G and H. The proof uses only Hall's theorem on 1-factors in regular bipartite graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号