首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work describes the melting and polymorphic behavior of poly(decamethylene terephthalamide) (PA 10T). Both solution‐crystallized (SC) and melt‐crystallized (MC) PA 10T show double melting endotherms in DSC. The SC crystal form melts at 260–300°C giving the first melting endotherm, and meanwhile undergoes a polymorphic transition forming the MC crystal form. The subsequent melting of the MC crystal form gives the second melting endotherm at 300–325°C. This irreversible polymorphic transition is confirmed by variable‐temperature WAXD and IR. Dynamic mechanical thermal analysis (DMTA) shows a glass transition temperature (Tg) at 127°C and the presence of an α′ transition at 203°C (0.1 and 1 Hz). This transition could be confirmed by DSC and variable‐temperature WAXD experiments. The α′ transition correlates with a reversible thermal process and a sudden change in intersheet spacing. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 465–472  相似文献   

2.
Phase behavior of silica-filled poly(dimethylsiloxane) (PDMS) network was investigated by wide-angle X-ray diffraction (WAXD) under various strain ratio between room temperature and ?100 °C, and anomalous polymorphic behavior was discovered. At room temperature, when sufficient strain was applied, PDMS network was found to transform into the mesomorphic phase from which only a pair of sharp equatorial reflections and faint meridional scattering were obtained in the WAXD pattern. At low temperature, PDMS network crystallized into one of three different crystal forms according to strain ratio. These crystal forms were denoted as α, transient, and β forms in the descending order of corresponding strain ratio. The mesomorphic phase at room temperature transformed into the crystalline α form by reducing temperature. There was an anomalous feature about the transition of the crystalline forms that the position of reflections in the WAXD pattern changed continuously and reversibly with strain between the α and the β forms through the transient form, while keeping the diffraction angles almost unchanged.  相似文献   

3.
The crystallization kinetics and the melting behavior of PLA and PLA with talc are investigated by dynamic scanning calorimeter and optical microscopy. The polymorphic aspect of PLA was highlighted by analyzing the melting process throughout heating after isothermal crystallization. The melting process of PLA with 5 mass% talc (PLAT5) shows the same thermal transitions as for PLA alone. The thermodynamic melting temperature of PLA and PLAT5 is determined to be 167.7 °C. The effects of the temperature and the cooling rate on the crystallization kinetics of PLA are analyzed. Finally, a simple and efficient protocol is defined to model the isothermal and the non-isothermal crystallization taking into account the polymorphism of PLA. Good agreement is found between the predictions of the proposed model and the experimental results under isothermal and non-isothermal conditions.  相似文献   

4.
The low-temperature heat capacity of K2MoO4 was measured by adiabatic calorimetry. The smoothed heat capacity values, entropies, reduced Gibbs energies, and enthalpies were calculated over the temperature range 0–330 K. The standard thermodynamic functions determined at 298.15 K were C p ° (298.15 K) = 143.1 ± 0.2 J/(mol K), S°(298.15 K) = 199.3 ± 0.4 J/(mol K), H°(298.15 K)-H°(0) = 28.41 ± 0.03 kJ/mol, and Φ°(298.15 K) = 104.0 ± 0.4 J/(mol K). The thermal behavior of potassium molybdate at elevated temperatures was studied by differential scanning calorimetry. The parameters of polymorphic transitions and fusion of potassium molybdate were determined.  相似文献   

5.
The polymorphic behavior of 1-octadecyl vinyl ether was investigated by DSC and X-ray diffraction measurements under various temperatures. In DSC measurement of 1-octadecyl vinyl ether in the temperature range of −30 to approximately 50°C, four transition peaks were observed on heating, whereas three transition peaks appeared on cooling. The phase-transition behavior was investigated by the repeating scanning DSC measurements. It was concluded that this compound exhibited four crystalline modifications: α, sub α, β0, and β1. It was confirmed by the temperature-controlled X-ray diffraction measurement that these phase transitions are attributed to the change of crystal systems from hexagonal packing (α form) to a distorted orthorhombic (O⟂′) system (β1 form) via orthorhombic (O⟂) (sub α form) and intermediate β0 form, although the β0 form has not yet been clarified. In the γ-ray-irradiation solid-state polymerization for these crystal forms of this compound, the polymerizability of the sub α form is higher than that of other forms, and that of the α form is lowest. The polymerizability demonstrated an unusual increase at a temperature of −83.6°C, probably because the cationic polymerization mechanism is dominant over that of the free radical. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3845–3853, 1999  相似文献   

6.
Seven polymorphic modifications of doxazosin mesylate, designed as forms A, D, E, F, G, H, I, and the amorphous state were studied by thermal methods (TG and DSC), temperature resolved X-ray powder diffractometry, hot stage and scanning electron microscopy and by FT-IR spectroscopy. Amorphous form was obtained either by fast evaporation of the solvent or by fast cooling of the melt in the DSC. Polymorphs A and F were found to be stable in the temperature range from room temperature to their melting points at 277.9 and 276.5°C, respectively. Form G, which melts at 270.8°C, was found to be hygroscopic. Polymorph D undergoes irreversible solid–liquid–solid phase transition at 235.5°C to polymorph I which melts at 274.9°C. Form H, which melts at 258.0°C, was found to be unstable at high temperatures. DSC examinations revealed that form H is irreversibly transformed to polymorph F during heating above the temperature of about 240°C. The amorphous state was found to be stable at room temperature but when heating above the glass transition (T g=144.1°C) it crystallizes at 221.6°C, what leads into a mixture of polymorphic forms. The new polymorphic form designed as E was identified in the mixture. The polymorph E is converted by heating to the more stable form F. The solubilities at 25°C for forms A, and F in methanol are 3.5 and 7.7 mg mL−1and in water they are 3.8 and 6.2 mg mL−1, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The synthesis, thermal behavior, bulk microstructure, and wettability of new polyacrylates carrying spaced 4‐perfluorohexylpropyl benzoate and 4‐perfluorooctylpropyl benzoate units in the side groups were investigated. X‐ray diffraction analysis proved the formation of different smectic mesophases (SmI2, SmF2, and SmC2) and the evolution of their structures and lattice parameters with temperature. The mesophase polymorphic behavior depended on the length of the perfluorinated chain segment in the repeat unit. The electron density profiles along the smectic layer normal were drawn and provided a deeper insight into the packing of the side chains in a tilted, double layer structure. Thin polymer films were cast from solution, and their low wettability was established by measurements of contact angles with different probing liquids. We suggest that the hydrophobicity and lipophobicity of the films are enhanced by the mesophase surface structure which is mediated by the high‐order, mesophase bulk structure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4128–4139, 2010  相似文献   

8.
The polymorphic behavior of a polyester consisting of an aromatic triad mesogen and a flexible spacer has been investigated. The effect of thermal and mechanical treatment on the appearance of two crystalline phases stable at room temperature is discussed. The molecular packing (triclinic cell, space group P1 ) and the morphological parameters of the crystalline phase stabilized by drawing process are evaluated and refined. The whole-pattern method, based on the analysis of the whole x-ray diffraction pattern from fiber samples of polymer, has been employed. The molecular packing resembles very much that of polyethylene terephthalate. ©1995 John Wiley & Sons, Inc.  相似文献   

9.
Single crystals of the crystallosolvate [bicalutamide + DMSO] with 1:1 stoichiometry were grown, and their structures were solved by X-ray diffraction methods. Polymorphic modifications I and II, the amorphous state, and the DMSO crystallosolvate of bicalutamide were prepared and thermochemistry of fusion processes was studied by DSC technique. The temperature dependence of the saturated vapor pressure of polymorphic form I was obtained and the thermodynamic characteristics of the sublimation process including the crystal lattice energy were calculated. The solution enthalpies of the forms under consideration and the crystallosolvate were acquired by the solution calorimetry procedure. The phase transition enthalpies estimated for form I, form II, and the amorphous state followed the rank order: form I— > form II, form I— > amorphous state, and form II— > amorphous state. The crystal lattice energy of polymorphic form II was determined using the results of sublimation and solution calorimetric experiments. The difference between the crystal lattice energy of the crystallosolvate and unsolvated phases was observed. The dissolution kinetics of forms I, II, the amorphous state, and DMSO solvate in water were investigated.  相似文献   

10.
The system Rb3PO4–Ba3(PO4)2 was investigated by thermoanalytical methods, X-ray powder diffraction, ICP, and FT-IR. On the basis of the obtained results its phase diagram was proposed. For this system with one intermediate compound, BaRbPO4, we found that this compound melts congruently at 1700 °C, exhibits a polymorphic transition at 1195 °C and is high-temperature unstable. Also, the intermediate compound was subject to gradual decomposes to Ba3(PO4)2 (the solid phase) and vaporization (with conversion of phosphorus and rubidium oxides into vapor phase). We also found that Rb3PO4 melts congruently at 1450 °C and shows a polymorphic transition at 1040 °C. Regarding Ba3(PO4)2, we have confirmed that it melts congruently at 1605 °C and exhibits a polymorphic transition at 1360 °C.  相似文献   

11.
It is well known that different forms of solid-state polymorphic materials exhibit diverse physicochemical properties. The variations in the wetting and surface energetics of a pair of organic polymorphic solids are reported in detail here for the first time. The growth of macroscopic single crystals (facet area >1 cm(2)) of paracetamol has enabled for the first time the direct measurement of advancing contact angles, theta(A) for water and diiodomethane on a range of specific facets for two polymorphs; forms I and II. Not only was the wetting behavior found to be anisotropic, as has been recently reported, but the differing polymorphic forms exhibited significant variations in their wetting behavior for the same Miller indexed faces. The (001), (010), and (110) faces were studied, and the observed wettability data differed confirming the independence of facet wettability and Miller indices for both polymorphs. theta(A) was found to be very sensitive to the local surface chemistry for each facet examined, which in turn is a direct consequence of the molecular packing and structure within the crystal lattice. On the basis of the theta(A) value of water, the hydrophilicity rankings for the facet surfaces of form II examined is: (010) approximately (110) > (001). This experimental study highlights complex surface chemistry of polymorphic solids in which anisotropic surface energies were observed for both forms of paracetamol, strongly suggesting that such anisotropic wetting behavior is the norm for organic crystalline solids. Furthermore, the same Miller indexed facets for forms I and II exhibited very different surface chemical behavior, such that it was not possible to infer understanding about one form based upon knowledge of another form.  相似文献   

12.
The thermal behavior of sodium saccharin polymorphic forms was investigated using thermogravimetry and differential scanning calorimetry, while structural changes during the dehydration processes were monitored by X-ray powder diffraction. In solid state, sodium saccharine may exhibit three forms: anhydrate, 2/3 hydrate (triclinic), and 15/8 hydrate (monoclinic) ones. In this investigation, it was established that monoclinic and triclinic forms compose an entantiotropically related polymorphs system. At 82 °C, the 15/8 hydrated monoclinic form is converted to 2/3 hydrated triclinic form, which showed to be the more thermodynamically stable form at room temperature. Spontaneous solidification leads to the formation of triclinic cell setting, and additionally, spontaneous hydration of the anhydrous form leads to formation of 2/3 hydrated triclinic form.  相似文献   

13.
This study is aimed at exploring the utility of thermoanalytical methods in the characterization of various polymorphs and solvates of nevirapine. The different forms obtained by recrystallization of nevirapine from various solvents showed morphological differences in SEM. The presence of polymorphic forms is suggested by single sharp melting endotherm different from original sample in DSC and no mass loss in TG, while appearance of desolvation peak in TG indicated the formation of solvates. The higher desolvation temperatures of all the solvates than their respective boiling point indicate tighter binding of solvent. The changes in the crystal lattice were demonstrated by X-ray powder diffraction studies. The enthalpy of fusion rule indicated the existence of monotropy in polymorphic pairs I/O and II/O, while I/II is enantiotropically related. The enthalpy of solution, an indirect measure of the lattice energy of a solid, was well correlated with the crystallinity of all the solid forms obtained. The magnitude of ΔH sol was found to be ?14.26  kJ mol?1 for Form V and ?8.29  kJ mol?1 for Form O, exhibiting maximum ease of molecular release from the lattice in Form V. The transition temperature was found to be higher than the melting of both the forms except for polymorphic pair I/II providing complementary evidence for the existence of monotropy as well as enantiotropy in these polymorphic pairs.  相似文献   

14.
热处理对聚己二酸丁二醋多晶结构和降解行为的影响   总被引:1,自引:0,他引:1  
通过熔融结晶并结合退火处理方法得到多晶结构的聚己二酸丁二酯(PBA)及具有不同热历史的热力学稳定的a晶型,采用广角X射线衍射仪(WAXD)、原子力显微镜(AFM)和差示扫描量热仪(DSC)研究了PBA的多晶结构、晶体尺寸和结晶形貌,跟踪了退火处理PBA的生物降解行为.结果表明,分子链在相同晶格排列中围绕c轴空间取向的不...  相似文献   

15.
The existence, in the temperature range 20–400°C, of three polymorphic species α, β, and δ of strontium formate, and of four polymorphic species α, β, γ, and δ of calcium formate is established by the means of X-ray diffraction. Crystal lattices of all these varieties are given, and the temperature ranges for their existence have been precisely stated. The importance of the role played by water vapor traces on some polymorphic transitions is pointed out.  相似文献   

16.
The existence of new polymorphic varieties of strontium formate (β, δ) and calcium formate (γ, δ) has been established by differential thermal analysis. In our experimental conditions the following species are detected: β-Sr(HCOO)2 below 235°C; δ-Sr(HCOO)2 above 235°C; γ-Ca(HCOO)2 between 150 and 300°C; and δ-Ca(HCOO)2 beyond 300°C. It is shown that some of the corresponding polymorphic transitions for these formates are possible only in the presence of water traces.  相似文献   

17.
Russian Journal of General Chemistry - The crystal structure of the new polymorphic modification of B(C6F5)3·Py complex was determined. It was shown by a static tensimetric method using a...  相似文献   

18.
The present work is a concrete example of how physico-chemical studies, if performed in depth, are crucial to understand the behavior of pharmaceutical solids and constitute a solid basis for the control of the reproducibility of the industrial batches. In particular, a deep study of the thermal behavior of glipizide, a hypoglycemic drug, was carried out with the aim of clarifying whether the recognition of its polymorphic forms can really be done on the basis of the endothermic peak that the literature studies attribute to the melting of the compound. A number of analytical techniques were used: thermal techniques (DSC, TGA), X-ray powder diffraction (XRPD), FT-IR spectroscopy and scanning electron microscopy (SEM). Great attention was paid to the experimental design and to the interpretation of the combined results obtained by all these techniques. We proved that the attribution of the endothermic peak shown by glipizide to its melting was actually wrong. The DSC peak is no doubt triggered by a decomposition process that involves gas evolution (cyclohexanamine and carbon dioxide) and formation of 5-methyl-N-[2-(4-sulphamoylphenyl) ethyl] pyrazine-2-carboxamide, which remains as decomposition residue. Thermal treatments properly designed and the combined use of DSC with FT-IR and XRPD led to identifying a new polymorphic form of 5-methyl-N-[2-(4-sulphamoylphenyl) ethyl] pyrazine-2-carboxamide, which is obtained by crystallization from the melt. Hence, our results put into evidence that the check of the polymorphic form of glipizide cannot be based on the temperature values of the DSC peak, since such a peak is due to a decomposition process whose Tonset value is strongly affected by the particle size. Kinetic studies of the decomposition process show the high stability of solid glipizide at room temperature.  相似文献   

19.
In this study, the effects of crystallization conditions (cooling rate and end temperature of cooling) on crystallization behavior and polymorphic composition of isotactic polypropylene/multi‐walled carbon nanotubes (iPP/MWCNTs) composites nucleated with different concentrations of β‐nucleating agent (tradename TMB‐5) were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and scanning electronic microscopy (SEM). The results of DSC, WAXD and SEM revealed that the addition of MWCNTs and TMB‐5 evidently elevates crystallization temperatures and significantly decreases the crystal sizes of iPP. Because of the competition between α‐nucleation (provided by MWCNTs) and β‐nucleation (induced by TMB‐5), the β‐phase crystallization takes place only when 0.15 wt% and higher concentration of TMB‐5 is added. Non‐isothermal crystallization kinetics study showed that the crystallization activation energy ΔE of β‐nucleated iPP/MWCNTs composites is obviously higher than that of pure iPP, which slightly increases with the increase of TMB‐5 concentration, accompanying with the transition of its polymorphic crystallization behavior. The results of non‐isothermal crystallization and melting behavior suggested that the cooling rate and end temperature of cooling (Tend) are important factors in determining the proportion and thermal stability of β‐phase: Lower cooling rate favors the formation of less amount of β‐phase with higher thermal stability, while higher cooling rate encourages the formation of higher proportion of β‐phase with lower thermal stability. The Tend = 100°C can eliminate the β–α recrystallization during the subsequent heating and therefore enhance the thermal stability of the β‐phase. By properly selecting TMB‐5 concentration, cooling rate and Tend, high β‐phase proportion of 88.9% of the sample was obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The mixing of hydrocarbons and alcohols in an excess of water is explained by polymorphic transitions similar to crystallization in an ensemble of water clusters. Enthalpies of transitions of 4.90 ± 0.07 and 2.2 ± 0.3 kJ/mol are obtained for solutions of hydrocarbons and alcohols in an excess of water, respectively. It is concluded that the mixing of water in an excess of hydrocarbons and alcohols is similar to evaporation (the breaking of H-bonds) with an enthalpy of 34 ± 1.4 kJ/mol. It is established that a polymorphic transition occurs between two binodals, and is accompanied by the emergence of microphases (concentration fluctuations) of alcohols in water. Binodals and spinodals in an excess of water and alcohol coincide for butyl and other higher alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号