首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, as usual in vector-valued optimization, we consider the partial ordering induced in a topological vector space by a closed and convex cone. In this way, we define maximal and minimal sets of a vector-valued function and consider minimax problems in this setting. Under suitable hypotheses (continuity, compactness, and special types of convexity), we prove that, for every $$\alpha \varepsilon Max\bigcup\limits_{s\varepsilon X_o } {Min_w } f(s,Y_0 ),$$ there exists $$\beta \varepsilon Min\bigcup\limits_{r\varepsilon Y_o } {Max} f(X_0 ,t),$$ such that β ≤ α (the exact meanings of the symbols are given in Section 2).  相似文献   

2.
Для линейных методов суммирования рядов Ф урье (1) $$L_n (f;x) = \frac{1}{\pi }\mathop \smallint \limits_{ - \pi }^\pi f(x + t)\left( {\frac{1}{2} + \sum\limits_{k = 1}^n {\lambda _{k,n} } \cos kt} \right)dt$$ на классах $$C(\varepsilon ) = \{ f:E_n (f) \leqq \varepsilon _n ;\forall n \geqq 0\} ,\varepsilon = \{ \varepsilon _n \} _{n = 0.}^\infty \varepsilon _n \downarrow 0,$$ доказываются:
  1. оценки для порядка р оста норм ∥{Ln∥, если из вестен порядок приближения операторами (1) некоторого классаС (?) (при этом, если опера торы (1) приближают класс С(е) с наилучшим порядком, то находится точная а симптотика возрастания норм {∥ Ln∥);
  2. сравнительные оцен ки порядков приближе ния классовС(?) операторами (1), если известен порядок при ближения ими некотор ого более узкого класса С(?*).
В том случае, когда опе раторы (1) приближают кл асс С(?*) с наилучшим порядком, получаются точные по рядковые оценки для л юбого более широкого класса С(?).  相似文献   

3.
Получены новые оценк иL-нормы тригонометр ических полиномов $$T_n (t) = \frac{{\lambda _0 }}{2} + \mathop \sum \limits_{k = 1}^n \lambda _k \cos kt$$ в терминах коэффицие нтовλ k и их разностейΔλ k=λ k?λ k?1: (1) $$\mathop \smallint \limits_{ - \pi }^\pi |T_n (t)|dt \leqq \frac{c}{n}\mathop \sum \limits_{k = 0}^n |\lambda _\kappa | + c\left\{ {x(n,\varphi )\mathop \sum \limits_{k = 0}^n \Delta \lambda _\kappa \mathop \sum \limits_{l = 0}^n \Delta \lambda _l \delta _{\kappa ,l} (\varphi )} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$ где $$\kappa (n,\varphi ) = \mathop \smallint \limits_{1/n}^\pi [t^2 \varphi (t)]^{ - 1} dt, \delta _{k,1} (\varphi ) = \mathop \smallint \limits_0^\infty \varphi (t)\sin \left( {k + \frac{1}{2}} \right)t \sin \left( {l + \frac{1}{2}} \right)t dt,$$ a ?(t) — произвольная фун кция ≧0, для которой опр еделены соответствующие инт егралы. Из (1) следует, что методы $$\tau _n (f;t) = (N + 1)^{ - 1} \mathop \sum \limits_{k = 0}^{\rm N} S_{[2^{k^\varepsilon } ]} (f;t), n = [2^{N\varepsilon } ],$$ являются регулярным и для всех 0<ε≦1/2. ЗдесьS m (f, x) частные суммы ряда Фу рье функцииf(x). В статье исследуется многомерный случай. П оказано, что метод суммирования (о бобщенный метод Рисса) с коэффиц иентами $$\lambda _{\kappa ,l} = (R^v - k^\alpha - l^\beta )^\delta R^{ - v\delta } (0 \leqq k^\alpha + l^\beta \leqq R^v ;\alpha \geqq 1,\beta \geqq 1,v< 0)$$ является регулярным, когда δ > 1.  相似文献   

4.
LetL(x) denote the number of square full integers ≤x. By a square-full integer, we mean a positive integer all of whose prime factors have multiplicity at least two. It is well known that $$\left. {L(x)} \right| \sim \frac{{\zeta ({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2})}}{{\zeta (3)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})}}{{\zeta (2)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ where ζ(s) denotes the Riemann Zeta function. Let Δ(x) denote the error function in the asymptotic formula forL(x). On the basis of the Riemann hypothesis (R.H.), it is known that \(\Delta (x) = O(x^{\tfrac{{13}}{{81}} + \varepsilon } )\) for every ε>0. In this paper, we prove the following results on the assumption of R.H.: (1) $$\frac{1}{x}\int\limits_1^x {\Delta (t)dt} = O(x^{\tfrac{1}{{12}} + \varepsilon } ),$$ (2) $$\int\limits_1^x {\frac{{\Delta (t)}}{t}\log } ^{v - 1} \left( {\frac{x}{t}} \right) = O(x^{\tfrac{1}{{12}} + \varepsilon } )$$ for any integer ν≥1. In fact, we prove some general results and deduce the above from them. On the basis of (1) and (2) above, we conjecture that \(\Delta (x) = O(x^{{1 \mathord{\left/ {\vphantom {1 {12}}} \right. \kern-0em} {12}} + \varepsilon } )\) under the assumption of R.H.  相似文献   

5.
The author considers a class F of analytic functions real in the interval [-1, 1] and bounded in the unit circle. As an estimate of the optimal quadrature error R(n) over the class F it is shown that $$_e - \left( {2\sqrt 2 + \frac{1}{{\sqrt 2 }}} \right)\pi \sqrt n \leqslant R(n) \leqslant e^{ - \frac{\pi }{{\sqrt 2 }}n} .$$ With the additional condition that \(\mathop {max}\limits_{x \in [ - 1,1]}\) ¦f(x)¦?B, an estimate is obtained for the ?-entropy H?(F): $$\frac{8}{{27}}\frac{{(1n2)^2 }}{{\pi ^2 }} \leqslant \mathop {\lim }\limits_{\varepsilon \to 0} \frac{{H_\varepsilon (F)}}{{\left( {\log \frac{1}{\varepsilon }} \right)^3 }} \leqslant \frac{2}{{\pi ^2 }}(1n2)^2 .$$   相似文献   

6.
In this paper, we shall prove the existence of the singular directions related to Hayman's problems[1]. The results are as follows.
  1. Suppose that f(z) is a transcendental integral function in the finite plane, then there exists a direction H: argz= θ0 (0≤θ0>2π) such that for every positive ε, every integer p(≠0, ?1) and every finite complex number b(≠0), we have $$\mathop {\lim }\limits_{r \to \infty } \left\{ {n(r,\theta _0 ,\varepsilon ,f' \cdot \{ f\} ^p = b)} \right\} = + \infty $$
  2. Suppose that f(z) is a transcendental integral function in the finite plane, then there exists a direction H:z= θ0 (0≤θ0>2π) such that for every positive ε, every integrer p(≥3) and any finite complex numbers a(≠0) and b, we have $$\mathop {\lim }\limits_{r \to \infty } \left\{ {n(r,\theta _0 ,\varepsilon ,f' - a\{ f\} ^p = b)} \right\} = + \infty $$
  3. Suppose that f(z) is a meromorphic function in the finite plane and satisfies the following condition $$\mathop {\lim }\limits_{r \to \infty } \frac{{T(r,f)}}{{(\log r)^3 }} = + \infty $$ then there exists a direction H:z= θ0 (0≤θ0>2π) such that for every positive ε, every integer p(≥5) and every two finite complex numbers a(≠0) and b, we have $$\mathop {\lim }\limits_{r \to \infty } \left\{ {n(r,\theta _0 ,\varepsilon ,f' - a\{ f\} ^p = b)} \right\} = + \infty $$
The singular directions in Theorems I–III are called Hayman directions.  相似文献   

7.
В статье доказываетс я Теорема.Какова бы ни была возрастающая последовательность натуральных чисел {H k } k = 1 c $$\mathop {\lim }\limits_{k \to \infty } \frac{{H_k }}{k} = + \infty$$ , существует функцияf∈L(0, 2π) такая, что для почт и всех x∈(0, 2π) можно найти возраст ающую последовательность номеров {nk(x)} k=1 ,удовлетворяющую усл овиям 1) $$n_k (x) \leqq H_k , k = 1,2, ...,$$ 2) $$\mathop {\lim }\limits_{t \to \infty } S_{n_{2t} (x)} (x,f) = + \infty ,$$ 3) $$\mathop {\lim }\limits_{t \to \infty } S_{n_{2t - 1} (x)} (x,f) = - \infty$$ .  相似文献   

8.
Solutions with asymptotics in integral and fractional powers of the parameter ? are constructed for the vector differential equation $$\varepsilon ^h \dot X = A(t,\varepsilon ) X + \varepsilon ^{\alpha _1 } p(t,\varepsilon ) \exp \left( {\varepsilon ^{ - h} \int\limits_0^t {\lambda (\tau )d\tau } } \right)$$ in the case of resonance and multiple spectrum of the limit matrix. $$\varepsilon ^h \dot X = A(t,\varepsilon ) X + \varepsilon ^{\alpha _1 } p(t,\varepsilon ) \exp \left( {\varepsilon ^{ - h} \int\limits_0^t {\lambda (\tau )d\tau } } \right)$$   相似文献   

9.
LetQ(x) denote a quadratic form over the rational integers in four variables (x=(x1,...,x4)). ThenQ is representable as a symmetric matrix. Assume this matrix to be non-singular modp(p≠2 prime); then the “inverse” quadratic formQ ?1 modp can be defined. Letf:?4→? be defined such that the Fourier transformf exists and the sum $$\sum\limits_{x \in \mathbb{Z}^4 } {f(c x), c \in \mathbb{R}, c \ne 0} $$ is convergent. Furthermore, letm=p 1...p k be the product ofk distinct primes withm>1, 2×m; let $$\varepsilon = \prod\limits_{i = 1}^k {\left( {\frac{{\det Q}}{{p_i }}} \right)} \ne 0$$ for the Legendre symbol $$\left( {\frac{ \cdot }{p}} \right)$$ ; define $$B_i (Q,x) = \left\{ {\begin{array}{*{20}c} {1 for Q(x) \equiv 0\bmod p_i } \\ , \\ {0 for Q(x)\not \equiv 0\bmod p_i } \\ \end{array} } \right.$$ and forr∈?,r>0, $$F(Q,f,r) = \sum\limits_{x \in \mathbb{Z}^4 } {\left( {\prod\limits_{i = 1}^k {\left( {B_i (Q,x) - \frac{1}{{p_i }}} \right)} } \right)f(r^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x)} $$ Then we have $$F(Q,f,m) = \varepsilon F(Q^{ - 1} ,\hat f,m)$$   相似文献   

10.
Let Q(x) denote the number of 4-full numbers not exceeding x. It is well known that $$Q(x) = \sum\limits_{j = 4}^7 {r_j x^{1/j} + R(x)}$$ where $$r_j = \mathop {res}\limits_{s = 1/j} (F(s)/s), F(s) = \mathop \prod \limits_P \left( {1 + \frac{{p^{ - 4s} }}{{1 - p^{ - s} }}} \right)$$ and R(x) is the remainder. This paper proves that $$R(x) \ll x^{3626/35461 + \varepsilon }$$ where ε is any positive number.  相似文献   

11.
По определению после довательность {μ n пр инадлежит классуG s , если звезда М иттагЛеффлера произвольного степе нного ряда (1) $$\mathop \sum \limits_0^\infty a_n z^n , \mathop {lim sup}\limits_{n \to \infty } \left| {a_n } \right|^{1/n}< \infty $$ , совпадает со звёздам и Миттаг-Леффлера сте пенных рядов $$\mathop \sum \limits_0^\infty \mu _n a_n z^n ,\mathop \sum \limits_0^\infty \mu _n^{ - 1} a_n z^n $$ . В работе установлены следующие утвержден ия Теорема 1.Для произво льной последователь ности ? n с условиями $$0< \varphi _n< 1,\mathop {lim}\limits_{n \to \infty } \varphi _n = 0,\mathop {lim}\limits_{n \to \infty } \varphi _n^{1/n} = 1$$ существует неубываю щая функция χ(t) такая, ч то моменты \(\mu _n = \int\limits_0^1 {t^n d\chi (t)} \) удовлетворяют условию 0<μnn звезда М иттаг-Леффлера любог о ряда (1) совпадает со звездой МиттагЛеффлера степенных рядов . Теорема 2. Для произвол ьной неотрицательно й последовательности {аn} с условием {a n } и для любой последов ательности {?n} для к оторой 0n<1, \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n = 0\) сущест вуютπ={π n }∈G s и последовательнос ть {пi} такие, что anμn≦1 (n≧n0), \(a_{n_i } \mu _{\mu _i } \geqq exp( - \varepsilon _{n_i } )\) (i=1, 2, ...) и при эmom звезда Миттаг-Леффлера ряда (1) совпа дает со звездой Миттаг- Леффлера степенных р ядов .  相似文献   

12.
пУсть {f k; f k * ?X×X* — пОлНАь БИОРтОгОНАльНАь сИс тЕМА В БАНАхОВОМ пРОстРАН стВЕ X (X* — сОпРьжЕННОЕ пРОст РАНстВО). пУсть (?→+0) $$\begin{gathered} S_n f = \sum\limits_{k = 0}^n {f_k^* (f)f_k ,} K(f,t) = \mathop {\inf }\limits_{g \in Z} (\left\| {f - g} \right\|_x + t\left| g \right|_z ), \hfill \\ X_0 = \{ f \in X:\mathop {\lim }\limits_{n \to \infty } \left\| {S_n f - f} \right\|_x = 0\} ,X_\omega = \{ f \in X:K(f,t) = 0(\omega (t))\} , \hfill \\ \end{gathered} $$ гДЕZ?X — НЕкОтОРОЕ пОД пРОстРАНстВО с пОлУН ОРМОИ ¦·¦ И Ω — МОДУль НЕпРЕРыВНО стИ УДОВлЕтВОРьУЩИИ Усл ОВИУ sup Ω(t)/t=∞. пОслЕДОВАтЕ льНОстьΤ={Τ k} кОМплЕксНых ЧИ сЕл НАжыВАЕтсь МНОжИтЕл ЕМ сИльНОИ схОДИМОст И ДльX Τ, жАпИсьΤ?М[X Τ,X Τ], ЕслИ Д ль кАжДОгО ЁлЕМЕНтАf?X Τ сУЩЕстВ УЕт тАкОИ ЁлЕМЕНтf τ0, ЧтОf k * (f τ)=Τkf k * (f) Дль ВсЕхk. ДОкА жАНО сРЕДИ ДРУгИх слЕДУУЩ ЕЕ УтВЕРжДЕНИЕ. тЕОРЕМА. пУсmь {fk; f k * } —Н ЕкОтОРыИ (с, 1)-БАжИс тАк ОИ, ЧтО ВыпОлНьУтсь НЕРАВЕН стВА тИпА НЕРАВЕНстВА ДжЕ ксОНА с пОРьДкОМ O(?n) u тИ пА НЕРАВЕНстВА БЕРНшmЕИ НА с пОРьДкОМ O(1/?n). ЕслИ пОслЕДОВАтЕл ьНОсть Τ кВАжИВыпУкл А И ОгРАНИЧЕНА, тО $$\tau \in M[X_{\omega ,} X_0 ] \Leftrightarrow \omega (\varphi _n )\tau _n \left\| {S_n } \right\|_{[X,X]} = o(1).$$ ЁтОт ОБЩИИ пОДхОД НЕМ ЕДлЕННО ДАЕт клАссИЧ ЕскИЕ РЕжУльтАты, ОтНОсьЩИ Есь к ОДНОМЕРНыМ тРИгОНОМЕтРИЧЕскИМ РьДАМ. НО тЕпЕРь ВОжМО жНы ДАльНЕИшИЕ пРИлОжЕН Иь, НАпРИМЕР, к РАжлОжЕНИьМ пО пОлИ НОМАМ лЕжАНДРА, лАгЕР РА ИлИ ЁРМИтА.  相似文献   

13.
The system of functional equations $$\forall p\varepsilon N_ + \forall (x,y)\varepsilon D:f(x,y) = \frac{1}{p}\sum\limits_{k = 0}^{p - 1} {f(x + ky,py)}$$ is suited to characterize the functions $$(x,y) \mapsto y^m B_m \left( {\frac{x}{y}} \right),m\varepsilon N,$$ B m means them-th Bernoulli-polynomial, $$(x,y) \mapsto \exp (x)y(\exp (y) - 1)^{ - 1}$$ (for these functionsD =R ×R +) and $$(x,y) \mapsto \log y + \Psi \left( {\frac{x}{y}} \right)(D = R_ + \times R_ + )$$ as those continuous solutions of this system which allow a certain separation of variables and take on some prescribed function values.  相似文献   

14.
An integral representation is obtained for the exponential product of stochastic semigroups $$X_s^t \otimes Z_s^t = X_s^t + \mathop \smallint \limits_{s< u< t} X_u^t dV_u X_s^u + \mathop {\smallint \smallint }\limits_{s< u_1< u_2< t} X_{u_2 }^t dV_{u_2 } X_{u_1 }^{u_2 } dV_{u_1 } X_s^{u_1 } + \cdots ,$$ whereV t is the generating process of the semigroupZ s t and the integrals are understood in the sense of mean-square limits of the Riemann-Stieltjes sums. This representation is different from the traditional representation $$X_s^t \otimes Z_s^t = E + \mathop \smallint \limits_{s< u< t} dW_u + \mathop {\smallint \smallint }\limits_{s< u_1< u_2< t} dW_{u_2 } dW_{u_1 } + \cdots ,$$ in which the integration extends over the processW t=Yt+Vt that is the generating process of the exponential productX s t ?Z s t andY t is the generator of the semigroupX s t .  相似文献   

15.
The purpose of this paper is to prove that for a large set of absolute Hausdorff and quasi-Hausdorff methods the condition $$\sum\limits_{k = 1}^\infty {\left| {\lambda _n a_n - \lambda _{n - 1} a_{n - 1} } \right|< } \infty $$ is a Tauberian condition, i.e., its fulfillment together with the absolute summability of \(\sum\limits_{n = 0}^\infty {a_n } \) tos implies that \(\sum\limits_{n = 0}^\infty {\left| {a_n } \right|}< \infty \) and \(\sum\limits_{n = 0}^\infty {a_n } = s.\) a n =s.  相似文献   

16.
ПустьM m - множество 2π-п ериодических функци йf с конечной нормой $$||f||_{p,m,\alpha } = \sum\limits_{k = 1}^m {||f^{(k)} ||_{_p } + \mathop {\sup }\limits_{h \ne 0} |h|^{ - \alpha } ||} f^{(m)} (o + h) - f^{(m)} (o)||_{p,} $$ где1 ≦ p ≦ ∞, 0≦α≦1. Рассмотр им средние Bалле Пуссе на $$(\sigma _{n,1} f)(x) = \frac{1}{\pi }\int\limits_0^{2x} {f(u)K_{n,1} (x - u)du} $$ и $$(L_{n,1} f)(x) = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^{2n} {f(x_k )K_{n,1} } (x - x_k ),$$ де0≦l≦n и x k=2kπ/(2n+1). В работе по лучены оценки для вел ичин \(||f - \sigma _{n,1} f||_{p,r,\beta } \) и $$||f - L_{n,1} f||_{p,r,\beta } (r + \beta \leqq m + \alpha ).$$   相似文献   

17.
LetR be the reals ≥ 0. LetF be the set of mapsf: {1, 2, ?,n} →R. Choosew ∈ F withw i = w(i) > 0. PutW i = w1 + ? + wi. Givenf ∈ F, define \(\bar f\) F by $$\bar f\left( i \right) = \frac{{\left\{ {w_i f\left( 1 \right) + \ldots + w_i f\left( i \right)} \right\}}}{{W_i }}.$$ Callf mean increasing if \(\bar f\) is increasing. Letf 1, ?, ft be mean decreasing andf t+1,?: ft+u be mean increasing. Put $$k = W_n^u \min \left\{ {w_i^{u - 1} W_i^{t - u} } \right\}.$$ Then $$k\mathop \sum \limits_{i = 1}^n w_i f_1 \left( i \right) \ldots f_{t + u} \left( i \right) \leqslant \mathop \prod \limits_{j = 1}^{t + u} (\mathop \sum \limits_{i = 1}^n w_i f_1 (i)).$$   相似文献   

18.
Пусть \(f(z) = \mathop \sum \limits_{k = 0}^\infty a_k z^k ,a_0 \ne 0, a_k \geqq 0 (k \geqq 0)\) — целая функци я,π n — класс обыкновен ных алгебраических мног очленов степени не вы ше \(n,a \lambda _n (f) = \mathop {\inf }\limits_{p \in \pi _n } \mathop {\sup }\limits_{x \geqq 0} |1/f(x) - 1/p(x)|\) . П. Эрдеш и А. Редди высказали пр едположение, что еслиf(z) имеет порядок ?ε(0, ∞) и $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (f)< 1, TO \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (f) > 0$$ В данной статье показ ано, что для целой функ ции $$E_\omega (z) = \mathop \sum \limits_{n = 0}^\infty \frac{{z^n }}{{\Gamma (1 + n\omega (n))}}$$ , где выполняется $$\lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{{\omega (n)}}{{e + 1}}} \right\}$$ , т.е. $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{1}{{\rho (e + 1)}}} \right\}< 1, a \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) = 0$$ . ФункцияE ω (z) имеет порядок ?.  相似文献   

19.
It is proved that the limit $$\mathop {\lim }\limits_{\Delta \to \infty } \mathop {\sup }\limits_\gamma \tfrac{1}{\Delta }\int_0^\Delta {f(\gamma (t))dt} $$ , wheref: ? → ? is a locally integrable (in the sense of Lebesgue) function with zero mean and the supremum is taken over all solutions of the generalized differential equation γ ∈ [ω1, ω2], coincides with the limit $$\mathop {\lim }\limits_{T \to \infty } \mathop {\sup }\limits_{c \geqslant 0} \varphi _f (k,{\mathbf{ }}T,{\mathbf{ }}c)$$ , where $$\varphi _f = \frac{{(k - 1)\bar I_f (T,c)}}{{1 + (k - 1)\bar \lambda _f (T,c)}},k = \frac{{\omega _2 }}{{\omega _1 }}$$ . Here ¯λf = λf /T, ¯ If =If/T, and λf is the Lebesgue measure of the set $$\{ \gamma \in [\gamma _0 ,\gamma _0 + T]:f(\gamma ) \geqslant c\} = A_f ,I_f = \int_{A_f } {f(\gamma )d\gamma } $$ . It is established that this limit always exists for almost-periodic functionsf.  相似文献   

20.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号