首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The double-perovskite Sr2NiMoO6−δ (SNMO) was investigated as an anode material of a solid oxide fuel cell (SOFC). With a 300 μm thick La0.9Sr0.1Ga0.8Mg0.2O3−σ (LSGM) disk as electrolyte and Ba0.5Sr0.5Co0.8Fe0.2O3−δ as the cathode, the SNMO anode showed power densities of 819 mW cm−2 in hydrogen at 1123 K. Moreover, there was no buffer layer between anode and electrolyte, which would reduce design techniques and save design cost. After test no chemical reaction was discovered between anode and electrolyte. The anode exhibited good conductivity and the value was around 60 S cm−1 in H2. Also it had almost linear thermal expansion from room temperature to 1253 K and the average thermal expansion coefficient was about 12.14 × 10−6 K−1, which was quite close to that of La0.9Sr0.lGa0.8Mg0.2O3 (12.17 × 10−6 K−1) electrolyte.  相似文献   

2.
Protonic ceramic membrane fuel cells (PCMFCs) based on proton-conducting electrolytes have attracted much attention because of many advantages, such as low activation energy and high energy efficiency. BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) electrolyte based PCMFCs with stable Ba0.5Sr0.5Zn0.2Fe0.8O3−δ (BSZF) perovskite cathode were investigated. Using thin membrane BZCY7 electrolyte (about 15 μm in thickness) synthesized by a modified Pechini method on NiO-BZCY7 anode support, PCMFCs were assembled and tested by selecting stable BSZF perovskite cathode. An open-circuit potential of 1.015 V, a maximum power density of 486 mW cm−2, and a low polarization resistance of the electrodes of 0.08 Ω cm2 was achieved at 700 °C. The results have indicated that BZCY7 proton-conducting electrolyte with BSZF cathode is a promising material system for the next generation solid oxide fuel cells.  相似文献   

3.
The partial energies and entropies of O2in perovskite-type oxides La0.6Sr0.4Co1−yFeyO3−δ(y=0, 0.1, 0.25, 0.4, 0.6) were determined as a function of nonstoichiometryδby coulometric titration of oxygen in the temperature range 650–950°C. An absolute reference value ofδwas obtained by thermogravimetry in air. The nonstoichiometry at a given oxygen pressure and temperature decreases with iron contenty. At low nonstoichiometries the oxygen chemical potential decreases withδ. The observed behavior can be interpreted by assuming random distribution of oxygen vacancies, an electronic structure with both localized donor states on Fe, and a partially filled itinerant electron band, of which the density of states at the Fermi level scales with the Co content. The energy of the Fe states is close to the energy at the Fermi level in the conduction band. The observed trends of the thermodynamic quantities can be interpreted in terms of the itinerant electron model only when the iron content is small. At high values ofδthe chemical potential of O2becomes constant, indicating partial decomposition of the perovskite phase. The maximum value ofδat which the compositions are single-phase increases with temperature.  相似文献   

4.
Cu2+ binding on γ-Al2O3 is modulated by common electrolyte ions such as Mg2+, , and in a complex manner: (a) At high concentrations of electrolyte ions, Cu2+ uptake by γ-Al2O3 is inhibited. This is partially due to bulk ionic strength effects and, mostly, due to direct competition between Mg2+ and Cu2+ ions for the SO surface sites of γ-Al2O3. (b) At low concentrations of electrolyte ions, Cu2+ uptake by γ-Al2O3 can be enhanced. This is due to synergistic coadsorption of Cu2+ and electrolyte anions, and . This results in the formation of ternary surface species (SOH2SO4Cu)+, (SOH2PO4Cu), and (SOH2HPO4Cu)+ which enhance Cu2+ uptake at pH < 6. The effect of phosphate ions may be particularly strong resulting in a 100% Cu uptake by the oxide surface. (c) EPR spectroscopy shows that at pH  pHPZC, Cu2+ coordinates to one SO group. Phosphate anions form stronger, binary or ternary, surface species than sulfate anions. At pH  pHPZC Cu2+ may coordinate to two SO groups. At pH  pHPZC electrolyte ions and are bridging one O-atom from the γ-Al2O3 surface and one Cu2+ ion forming ternary [γ-Al2O3/elecrolyte/Cu2+] species.  相似文献   

5.
A novel BaCe0.4Zr0.3 Sn0.1Y0.2O3−δ (BSY) electrolyte membrane with thickness of 20 μm was fabricated on NiO-based anode substrate via a one-step all-solid-state method followed by a co-sintering at 1450 °C for 5 h. Chemical stability test demonstrated that BSY electrolyte showed adequate chemical stability against CO2 and H2O at intermediate temperature. Besides, the doping of Sn also enhanced the conductivity in humidified hydrogen. With Nd0.7Sr0.3MnO3−σ cathode and hydrogen fuel, the fuel cell generated maximum output of 320, 185 and 105 mW cm−2 at 700, 650 and 600 °C, respectively. The interfacial resistance of the fuel cell was studied under open circuit conditions and the short-term cell performance also confirmed the stability of BSY electrolyte membrane.  相似文献   

6.
The compositions in the YBa2−xLaxCu3O7−δ (0x0.2) system were prepared by the solid state reaction, employing a novel high-temperature oxygen sintering route. The modified sintering route yields dense slab like microstructures with large grains. The decomposition (incongruent melting) temperature of the YBa2Cu3O7−δ (Y-123) phase was found to shift to higher temperatures with increasing oxygen partial pressure and lanthanum content. Structure remained orthorhombic up to x=0.2 with a decrease in the orthorhombic strain ((ba)/b). Iodometric titration indicated a systematic increase in the oxygen content with increasing lanthanum content. Thermo-gravimetric studies in various oxygen partial pressures revealed that the oxygen diffusion in to the YBa2Cu3O7−δ (δ>0.5) lattice is an exothermic event and takes place at temperatures not less than 573 K. High-temperature thermal-expansion measurements in air indicated that the nonlinearity in thermal expansion behaviour was reduced by the substitution of lanthanum.  相似文献   

7.
Electrolysis of suspensions of Co3O4 particles in Pb2+-containing electrolytes has been used for depositing PbO2 + Co3O4 composite layers on Ni rotating dise anodes. A sufficiently high angular speed of the electrode is necessary to obtain layers of homogeneous thickness and Co3O4 concentration. The volume fraction of Co3O4 particles in the deposit α reaches a limiting value of ca. 0.1 when the volume fraction of particles in suspension C exceeds 0.008. The current density j has little effect on α as long as it is in the range 1 to 20 mA cm−2; if j increases further, α decreases.PbO2 + Co3O4 composite layers have been studied as electrode materials for the oxygen evolution reaction (mainly in NaOH solution). The overpotential and Tafel slope decrease upon increasing α. At a fixed potential, j is roughly proportional to OH concentration. The PbO2 + Co3O4 electrode performance is fairly stable at 25°C but declines with time at higher temperature.  相似文献   

8.
The bulk superconducting YCa2Cu3O7−δ compounds are prepared at an ordinary pressure of oxygen by conventional solid-state reaction method. The formation of sample is tested by means of XRD and is studied for their ac susceptibility below room temperature up to 77.5 K. The samples are found single-phase orthorhombic structure and found superconducting at 83.5 K. It is shown that the analysis is consistent with published data on YBa2Cu3O7−δ oxide superconductor.  相似文献   

9.
Remarkable power density was obtained for anode-supported solid oxide fuel cells (SOFCs) based on La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM) electrolyte films, fabricated following an original procedure that allowed avoiding undesired reactions between LSGM and electrode materials, especially Ni. Electrophoretic deposition (EPD) was used for the fabrication of 30 μm-thick electrolyte films. Anode supports were made of La0.4Ce0.6O2−x (LDC). The LSGM powder was deposited by EPD on an LDC green tape-cast membrane added with carbon powder, both as pore former and substrate conductivity booster. A subsequent co-firing step at 1490 °C produced dense electrolyte films on porous LDC skeletons. Then, a La0.8Sr0.2Fe0.8Co0.2O3−δ (LSFC) cathode was applied by slurry-coating and calcined at 1100 °C. Finally, the porous LDC layer was impregnated with molten Ni nitrate to obtain, after calcination at 900 °C, a composite NiO–LDC anode. Maximum power densities of 780, 450, 275, 175, and 100 mW/cm2 at 700, 650, 600, 550, and 500 °C, respectively, were obtained using H2 as fuel and air as oxidant, demonstrating the success of the processing strategy. As a comparison, electrolyte-supported SOFCs made of the same materials were tested, showing a maximum power density of 150 mW/cm2 at 700 °C, more than 5 times smaller than the anode-supported counterpart.  相似文献   

10.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

11.
D.F. Zhou  Y.J. Xia  J.X. Zhu  J. Meng   《Solid State Sciences》2009,11(9):1587-1591
Ce6−xDyxMoO15−δ (0.0 ≤ x ≤ 1.8) were synthesized by modified sol–gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 °C and 800 °C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15−δ detected to be the best conducting phase with the highest conductivity (σt = 8.93 × 10−3 S cm−1) is higher than that of Ce5.6Sm0.4MoO15−δ (σt = 2.93 × 10−3 S cm−1) at 800 °C, and the corresponding activation energy of Ce5.6Dy0.4MoO15−δ (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15−δ (1.002 eV).  相似文献   

12.
The oxygen ions of the β-VOPO4 catalyst were exchanged with an tracer by a reduction–oxidation method and by a catalytic oxidation of but-1-ene using 2. The bands at 992 and 900 cm−1 were more shifted to lower frequencies than those at 1076 and 1002 cm−1. Applying the correlation between the Raman bands and stretching vibrations in the literature, the exchanged oxygen species were estimated. The results suggest that the P–O–V vacancies corresponding to 992 and 900 cm−1 were responsible for reoxidation and the V=O oxygen corresponding to the 1002 cm−1 band of β-VOPO4 was not. The (VO)2P2O7 was oxidized to β-VOPO4 by O2 above 823 K. The insertion position of oxygen was determined at the bands at 992 and 900 cm−1 of β-VOPO4 using 2, which is the same as the exchanged position.  相似文献   

13.
The non-isothermal crystallization of α-Fe from Fe81B13Si4C2 amorphous alloy was investigated. The kinetic parameters of crystallization process were determined by Kissinger and Kissinger–Akahira–Sunose (KAS) methods. It was established that the kinetic parameters of transformation do not change with the degree of crystallization in the range of 0.1–0.7. The kinetic model of the crystallization process was determined using the Malek's procedure. It was established that the primary crystallization α-Fe phase from amorphous alloy can be described by Šesták–Berggren autocatalytic model with kinetic triplet Ea = 349.4.0 kJ mol−1, ln A = 50.76 and f(α) = α0.72(1 − α)1.02.  相似文献   

14.
The development of non-precious metal catalysts with excellent bifunctional activities is significant for air–metal batteries. ABO3-type perovskite oxides can improve their catalytic activity and electronic conductivity by doping transition metal elements at B sites. Here, we develop a novel Sm0.5Sr0.5Co1−xNixO3−δ (SSCN) nanofiber-structured electrocatalyst. In 0.1 M KOH electrolyte solution, Sm0.5Sr0.5Co0.8Ni0.2O3−δ (SSCN82) with the optimal Co: Ni molar ratio exhibits good electrocatalytic activity for OER/ORR, affording a low onset potential of 1.39 V, a slight Tafel slope of 123.8 mV dec−1, and a current density of 6.01 mA cm−2 at 1.8 V, and the ORR reaction process was four-electron reaction pathway. Combining the morphological characteristic of SSCN nanofibers with the synergistic effect of cobalt and nickel with a suitable molar ratio is beneficial to improving the catalytic activity of SSCN perovskite oxides. SSCN82 exhibits good bi-functional catalytic performance and electrochemical double-layer capacitance.  相似文献   

15.
The high temperature reactions between 1 M LiPF6 EC:DEC and Al-doped LiNi1/3Mn1/3Co(1/3−z)AlzO2 charged to 4.3 V were studied by accelerating rate calorimetry (ARC) and compared with those of charged LiNi1/3Mn1/3Co1/3O2 and LiMn2O4. Al substitution for Co in LiNi1/3Mn1/3Co1/3O2 improves the thermal stability. Materials with z > 0.06 are less reactive with electrolyte than spinel LiMn2O4 at all temperatures studied. The maximum self-heating rate (SHR) attained and the specific capacity decrease as the Al content increases. There is a range of compositions near z = 0.1 that show excellent promise as materials which are both safer than and more energy dense than spinel LiMn2O4.  相似文献   

16.
Rietveld refinement of combined X-ray and neutron diffraction data has, within errors, confirmed the stoichiometries of two, cubic pyrochlore phases in the ZnOBi2O3Sb2O5 system. Neither phase has the ‘ideal’ stoichiometry, Zn2Bi3Sb3O14. One phase, P1, is a Zn-rich, Bi-deficient solid solution Zn2+xBi2.96−(xy)Sb3.04−yO14.04+δ. The other, P2, is a Bi-rich line phase, stoichiometry Zn2Bi3.08Sb2.92O14+δ. Both structures have a mixture of Bi, Zn on the A-sites and Zn, Sb on the B-sites. However, Zn is displaced off-centre in the A-sites to achieve lower co-ordination number with realistic ZnO bond lengths. Additional structural complexities arise from: displacement of O(2) atoms; partial occupancies of O(1) and O(2) sites; partial occupancy of a third, interstitial oxygen site, O(3). Since the multiplicities of the off-centre sites are much higher than those of the ideal positions, there is considerable possibility for correlated short range order throughout the structures.  相似文献   

17.
Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) hollow fibers were fabricated using a phase inversion/sintering method. As oxygen permeation of BSCF hollow fibers is controlled by the rate surface exchange kinetics, catalytic Ag particles were coated on both inner and outer surfaces using chemical deposition method, as verified by SEM and EDX. The Ag coated BSCF membranes showed up to 100% increase in oxygen permeation at 700 °C, and improvements lower than 10% were measured at 950 °C as compared with unmodified membranes. It was found that Ag catalyst surface loading was non-homogenous and concentrated on the perovskite grain boundaries. As a result, lighter Ag surface loading delivered improved oxygen flux while oxygen flux reached a maximum even though in the presence of excess catalyst loading. The catalytic activity of Ag was beneficial in enhancing surface reaction kinetics up to 850 °C attributed to the spillover effect. Above this temperature, the increase in oxygen permeation rate was marginally diminished due to the reduction of the spillover effect.  相似文献   

18.
The magnetic, electronic, and structural properties of the solid solutions LaxSr1−xRuO3 and LaxCa1−xRuO3 have been studied by 99Ru Mössbauer spectroscopy and other techniques. The LaxCa1−xRuO3 phases are reported for the first time and have been shown by powder X-ray diffraction measurements to be orthorhombically distorted perovskites. Electrical resistivity measurements on compacted powders show that all the phases are metallic with p 10−3, ohm-cm. Progressive substitution of Sr2+ by La3+ in ferromagnetic SrRuO3 leads to a rapid collapse of the magnetic hyper-fine splitting at 4.2°K. For x = 0.25 some ruthenium ions still experience a magnetic field but for 0.4 x 0.75 only single, narrow resonance lines are observed, consistent both with the complete removal of the ferromagnetism and with the presence of an averaged ruthenium oxidation state in each phase, i.e., Lax3+Sr1−x2+Ru(4−x)+O3 rather than Lax3+Sr1−x2+Rux3+Ru1−x4+O3. LaRuO3 and CaRuO3 both give essentially single-line spectra at 4.2°K, indicating that the ruthenium ions in these oxides are not involved in long-range antiferromagnetic order but are paramagnetic. The solid solutions LaxCa1−xRuO3 (0 < x 0.6) give sharp symmetrical singlets with chemical isomer shifts (relative to the Ru metal) which move progressively from the value characteristic of Ru4+ (−0.303 mm sec−1) toward the value for Ru3+ (−0.557 mm sec−1), consistent with the presence of intermediate ruthenium oxidation states in these phases also.  相似文献   

19.
The phase composition and electroconduction in air of solid electrolytes (Ce0.8Sm0.2)1 − x CuxO2 − δ (CSCu), where x = 0, 2, 5, 10, and 20 mol % and which are synthesized using the ceramic technology, are studied. Adding an additive of CuO lowers the CSCu sintering temperature by 100– 200°C and leads to the formation of single-phase solid solutions of a fluorite type up to x = 10 mol %. The electroconductivity of the CSCu electrolytes remains practically invariant upon adding up to 5 mol % Cu and equals 0.089–0.095 and 0.017–0.021 S cm−1 at 800 and 600°C. The sintering, adhesion, and electroconductance of composite cathodes based on La0.8Sr0.2MnO3 with 40% CSCu and their electrochemical behavior in air in the temperature interval 900–1000°C on carrying electrolyte Zr0.9Y0.1O1.95 with a CSCu sublayer containing 2 mol % Cu are studied.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 656–661.Original Russian Text Copyright © 2005 by Bogdanovich, Gorelov, Balakireva, Dem’yanenko.  相似文献   

20.
The molecular structures, vibrational frequencies, and electron affinities of the SF5On/SF5On (n = 1–3) species have been examined with four hybrid density functional theory (DFT) methods. The basis set used in this work is of double-ζ plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. The geometries are fully optimized with each DFT method independently. The SF5On (n = 1–3) species should be potential greenhouse gases. The anion SF5O2 with Cs symmetry has a 3A″ electronic state, and the neutral SF5O3 with 2A″ electronic state has Cs symmetry. The anions SF5O2 and SF5O3 should be regarded as SF5·O2 and SF5O·O2 complexes, respectively. Three different types of the neutral–anion energy separation presented in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The EAad values predicted by the B3PW91 method are 5.22 (SF5O), 4.38 (SF5O2), and 3.61 eV (SF5O3). Compared with the experimental vibrational frequencies, the BHLYP method overestimates the frequencies, and the other three methods underestimate the frequencies. The bond dissociation energies De (SF5On → SF5Onm + Om) for the neutrals SF5On and De (SF5On → SF5Onm + Om and SF5On → SF5Onm + Om) for the anions SF5On are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号