首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical characterization of boron-doped polycrystalline diamond thin-film (BDF) electrodes was studied using the anodic scan after concentrating lead in 0.1 mol/L KCl - 41 micromol/L Hg(NO(3))(2) and 0.1 mol/L KNO(3) - 0.01 mol/L HNO(3) - 41 micromol/L Hg(NO(3))(2); accumulation voltage was -0.90 V. The results obtained were compared with those given by glassy carbon (GC) electrodes and proved that the BDF electrodes offered high sensitivity, good precision and extreme stability over a 2-month period. These electrodes provided good resolving power for the determination of lead and cadmium and gave satisfactory results in the analysis of a pure water sample.  相似文献   

2.
Electrochemical detection of sugar-related compounds was conducted using a boron-doped diamond (BDD) electrode as a detector for flow-injection analysis (FIA). Sugar-related compounds oxidize at high applied potentials, for which the BDD electrode is suitable for electrochemical measurements. Conditions for an FIA system with a BDD detector were optimized, and the following detection limits were achieved for sugar-related compounds: monosaccharides, 25-100 pmol; sugar alcohols, 10 pmol; and oligosaccharides, 10 pmol. The detection limit for monosaccharide D-glucose (Glu) was 105 pmol (S/N = 3). A linear range was acquired from the detection limit to 50 nmol, and the relative standard deviation was 0.65% (20 nmol, n = 6). A high-performance liquid chromatography (HPLC) column was added to the system between the sample injector and the detector and detection limits to the picomole level were achieved, which is the same for the HPLC system and the FIA system. The electrochemical oxidation reaction of Glu was examined using cyclic voltammetry with the BDD detector. The reaction proved to be irreversible, and proceeded according to the following two-step mechanism: (1) application of a high potential (2.00 V vs. Ag/AgCl) to the electrode causes water to electrolyze on the electrode surface with the simultaneous generation of a hydroxyl radical on the surface, and (2) the hydroxyl radical indirectly oxidizes Glu. Thus, Glu can be detected by an increase in the oxidation current caused by reactions with hydroxy radicals.  相似文献   

3.
Highly conductive boron-doped diamond (BDD) electrodes are well suited for performing electrochemical measurements of nucleic acids in aqueous solution under diffusion-only control. The advantageous properties of this electrodic material in this context include reproducibility and the small background currents observed at very positive potentials, along with its robustness under extreme conditions so offering promising capabilities in future applications involving thermal heating or ultrasonic treatment. tRNA, single and double stranded DNA and 2'-deoxyguanosine 5'-monophosphate (dGMP) have been studied and well defined peaks were observed in all cases, directly assignable to the electro-oxidation of deoxyguanosine monophosphate.  相似文献   

4.
Boron-doped diamond (BDD) electrodes have been examined for the electrochemical oxidation of underivatized-nucleic acids in terms of single stranded and double stranded DNA. Cyclic voltammetry and square wave voltammetry have been used to study the oxidation reactions and to detect DNA without derivatization or hydrolysis steps. At the diamond electrode, at least two well-defined voltammetric peaks were observed for both single stranded and double stranded DNA. Diamond electrode is the first material to show a well-defined voltammetric peaks for adenine group oxidation directly in the helix structure of nucleic acid due to its wide potential window. For single stranded DNA, a third peak, related to the pyrimidine group oxidation was also observed. As-deposited diamond film with predominantly hydrogen-terminated surface exhibited superior performance over oxygen-terminated diamond in terms of sensitivity. However, by optimizing the ionic strength, sensitivity of O-terminated films could be improved. Linear calibration results have shown linearity of current with concentration in the range 0.1-8 microg mL(-1) for both guanine and adenine residues at as-deposited BDD. Detection limits (S/N = 3) of 3.7 and 10 ng mL(-1) for adenine and guanine residue in single stranded DNA, respectively, and 5.2 and 10 ng mL(-1) for adenine and guanine residue in double stranded DNA, respectively, were observed. This work shows the promising use of diamond as an electrochemical detector for direct detection of nucleic acids. The results also show the possibility of using the oxidation peak current of adenine group that is more sensitive for the direct detection of nucleicacids.  相似文献   

5.
An extremely strong oxidant, ferrate (Fe(VI) or FeO4(2-), has been produced electrochemically in an acidic aqueous medium for the first time.  相似文献   

6.
This review overviews recent reports on the electroanalytical applications of boron-doped diamond (BDD) electrodes. Because BDD electrodes have excellent features for electroanalysis, such as wide potential window, low background current, electrochemical stability, and fouling resistance, they can be useful for sensitive and stable detection of various substances, including drugs, bio-related substances, metal ions, and organic pollutants. Many articles have reported high-sensitivity detection of real samples, demonstrating that this electrode material is practically applicable. Surface modification of the BDD electrodes using metal nanoparticles, nanocarbons, and polymers can increase the sensitivity of the electrochemical detection. Furthermore, research on the electroanalytical device equipped with BDD electrodes will be expanded by combining peripheral technologies related to the device fabrication.  相似文献   

7.
8.
The adsorption of nitrogen species, in neutral electrolyte solutions, onto boron-doped diamond (BDD) electrode surfaces from dissolved NO2, NO, and N2O gases was induced at 0 V/SCE. Modified BDD electrode surfaces showed a different electrochemical response toward the hydrogen evolution reaction than did a nonmodified electrode surface in electrolyte base solution. The formation of molecular hydrogen and nitrogen gaseous species was confirmed by the online differential electrochemical mass spectrometry (DEMS) technique. Among the three nitrogen oxides gases, NO2 substantially modifies the electrolyte via hydrolysis leading to the formation of NO3- and its adsorption on the BDD electrode surface. The BDD/(NO3-) interface was the only N2O and N2 species generating system.  相似文献   

9.
The surface homogeneity of boron-doped diamond electrodes is variable and depends on anodic polarization conditions. The differentiation factor is the gradual and localized change in surface termination. A series of measurements under different polarization conditions was performed in order to investigate the scale of this effect. Nanoscale impedance microscopy (NIM) revealed large variation of surface resistance in individual grains. Based on the obtained results, we claim that the level of electrochemical heterogeneity significantly depends on the crystallographic texture of BDD. Modification of boron-doped diamond surface termination under anodic oxidation is assumed to be a multistage process.  相似文献   

10.
Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H2SO4 and phosphate buffer at pH 2.0 which allow quantitation over a 4 × 10−6 to 8 × 10−5 M range using boron-doped diamond and a 1 × 10−5 to 1 × 10−4 M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.  相似文献   

11.
Previously it was shown that four different aliphatic polyamines can be quantitatively electrooxidized at boron-doped diamond thin film electrodes without derivatization or the use of pulsed voltammetric waveforms [Anal. Chem. 71 (1999) 1188; Anal. Chem. 69 (1997) 4041]. The flow injection analysis (FIA-EC) investigation (amperometric detection mode) of cadaverine (CAD), putrescine (PUT), spermine (SPM) and spermidine (SPMD), reported previously [Anal. Chem. 71 (1999) 1188], are updated herein with particular emphasis on the electrode response variability and stability. Most of the measurements were made with a film deposited from a 0.50% methane-to-hydrogen (C/H) volumetric ratio. In general, films deposited with C/H ratios near this value tend to possess the requisite physicochemical properties to support anodic oxygen transfer reactions. The electrode performance was evaluated in terms of the linear dynamic range, limit of quantitation, response variability and response stability. A linear dynamic range from 1.0 μM to 1.0 mM and a limit of quantitation of 1.0 μM or 20 pmol injected (S/N≥3) were found for CAD, PUT, and SPMD. For SPM, a linear dynamic range from 0.32 μM to 1.0 mM and a limit of quantitation of 0.32 μM or 6.4 pmol were observed. The response variability, as low as 2–4%, was observed which is vastly improved over previous results. The improvement was achieved by introducing a 3–6 min delay period between injections. The long-term response stability was good with no evidence for any progressive response attenuation or complete fouling by the reaction product, even though a solid deposit was observed to accumulate on the electrode surface with extended use. The deposit appears to partially reduce the active electrochemical area for polyamine oxidation and to decrease the overpotential for water discharge. Preliminary chromatographic results demonstrated the possibility of separating and detecting the polyamines by a simple reverse-phase scheme at constant applied potential.  相似文献   

12.
Two important mechanisms for electron transfer processes at boron-doped diamond electrodes involving the oxidation of tetramethylphenylenediamine (TMPD) dissolved in aqueous solution and the oxidation of tetrahexylphenylenediamine (THPD) deposited in the form of microdroplets and immersed into aqueous eletrolyte solution are reported. For TMPD, the first oxidation step in aqueous solution follows the equation: Remarkably slow heterogeneous kinetics at a H-plasma-treated boron-doped diamond electrode are observed, consistent with a process following a pathway more complex than outer-sphere electron transfer. At the same boron-doped diamond electrode surface a deposit of THPD undergoes facile oxidation following the equation: This oxidation and re-reduction of the deposited liquid material occurs at the triple interface organic droplet|diamond|aqueous electrolyte and is therefore an example of a facile high-current-density process at boron-doped diamond electrodes due to good electrical contact between the deposit and the diamond surface. Received: 3 February 2000 / Accepted: 18 February 2000  相似文献   

13.
Most approaches to electron conduction from electrode to the enzyme requires the use of mediators – molecular relays which can take electrons from the electrode and deliver them to the redox sites of the enzyme. In the present paper, the biocatalytic reduction of oxygen to water in the presence of laccase is shown to proceed on the boron-doped diamond at highly positive potentials and without any additional mediator. The onset of catalytic reduction current appears at 0.805 V vs. NHE in solutions of pH 5.2. Laccase is either dissolved in the solution or trapped on the BDD electrode in a thin film of lipidic cubic phase. The remarkable stability of the modified electrode, avoiding the use of mediators and positive potential of the dioxygen reduction process make the BDD–laccase system especially interesting for applications in electrochemical sensing and microbiofuel cells.  相似文献   

14.
Highly boron-doped diamond electrodes are characterized voltammetrically employing Ru(NH3)63+/2+, Fe(CN)63−/4−, benzoquinone/hydroquinone, and cytochrome c redox systems. The diamond electrodes, which are polished to nanometer finish, are initially `activated' electrochemically and then pretreated by oxidation, reduction, or polishing. All electrodes give reversible cyclic voltammetric responses for the reduction of Ru(NH3)63+ in aqueous solution.Redox systems other than Ru(NH3)63+/2+ show characteristic electrochemical behavior as a function of diamond surface pretreatment. In particular, the horse heart cytochrome c redox system is shown to give reversible voltammetric responses at Al2O3 polished boron-doped diamond electrodes. No voltammetric response for cytochrome c is detected at anodically pretreated diamond electrodes. The observations are attributed to preferential interaction of the polished diamond surface with the reactive region of the cytochrome c molecule and low interference due to a lack of protein electrode fouling.  相似文献   

15.
The process of phenol oxidation on a boron-doped diamond electrode (BDD) is studied in acidic electrolytes under different conditions of generation of active oxygen forms (AOFs). The scheme of phenol oxidation known from the literature for other electrode materials is confirmed. Phenol is oxidized through a number of intermediates (benzoquinone, carboxylic acids) to carbon dioxide and water. Comparative analysis of phenol oxidation rate constants is performed as dependent on the electrolysis conditions: direct anodic oxidation, with oxygen bubbling, and addition of H2O2. A scheme is confirmed according to which active radicals (OH·, HO2·, HO2) are formed on a BDD anode that can oxidize the substrate which leads to formation of organic radicals interacting with each other and forming condensation products. Processes with participation of free radicals (chain-radical mechanism) play an important role in electrochemical oxidation on BDD. Intermediates and polymeric substances (polyphenols, quinone structures, and resins) are formed. An excess of the oxidant (H2O2) promotes a more effective oxidation of organic radicals and accordingly inhibition of the condensation process.  相似文献   

16.
Electrooxidation of ethylenediaminetetraacetic acid at a thin-film boron-doped polycrystalline diamond anode is studied by cyclic voltammetry and amperometry. It is shown that diamond electrodes can be used in the analytical determination of ethylenediaminetetraacetic acid: they have low background current; the detection limit is also rather low.  相似文献   

17.
We report linear sweep and square wave voltammetric studies on glucose oxidation at boron-doped diamond (BDD) electrodes in an alkaline medium in efforts to evaluate the techniques for electrochemically assaying glucose. The bare BDD electrode showed good linear responses to glucose oxidation for a concentration range from 0.5 to 10 mM glucose, which well encompasses the physiological range of 3-8 mM. The BDD electrodes did not experience interferences from ascorbic acid or uric acid during glucose detection. This method, when applied to real blood samples, gave results similar to those obtained by a commercial glucose monitor.  相似文献   

18.
Yanli Zhou  Jinfang Zhi 《Talanta》2009,79(5):1189-34
Boron-doped diamond (BDD) electrodes outperform conventional electrodes in terms of high stability, chemical inertness, wide potential window and low background current. Combining the superior properties of BDD electrodes with the merits of biosensors, such as specificity, sensitivity, and fast response, amperometric biosensors based on BDD electrodes have attracted the interests of many researchers. In this review, the latest advances of BDD electrodes with different surfaces including hydrogen-terminated, oxygen-terminated, metal nanoparticles-modified, amine-terminated, and carboxyl-terminated thin films, and microelectrodes, for the construction of various biosensors or the direct detection of biomolecules were demonstrated. The future trends of BDD electrodes in biosensing were also discussed.  相似文献   

19.
The electrooxidation of citric acid, malic acid, alanine and cysteine at boron-doped diamond (BDD) electrodes and glassy carbon (GC) electrodes was investigated by use of cyclic voltammetry. Well-defined, irreversible peaks were obtained for the oxidation of citric acid and cysteine. Malic acid and alanine exhibit discernible responses. This preliminary study has shown that BDD has better sensitivity than GC for these compounds. Except for cysteine, none of the studied compounds exhibits a recognizable oxidation peak at GC electrodes at millimolar concentration levels.  相似文献   

20.
The communication reports the direct oxidation of human haemoglobin at a bare boron-doped diamond electrode under moderately alkaline conditions with detection limit of 0.4 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号