首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider the Cauchy problem for a semilinear parabolic equation in divergence form with obstacle. We show that under natural conditions on the right-hand side of the equation and mild conditions on the obstacle, the problem has a unique solution and we provide its stochastic representation in terms of reflected backward stochastic differential equations. We also prove regularity properties and approximation results for solutions of the problem.  相似文献   

2.
This article deals with the existence and the uniqueness of solutions to quadratic and superquadratic Markovian backward stochastic differential equations (BSDEs) with an unbounded terminal condition. Our results are deeply linked with a strong a priori estimate on ZZ that takes advantage of the Markovian framework. This estimate allows us to prove the existence of a viscosity solution to a semilinear parabolic partial differential equation with nonlinearity having quadratic or superquadratic growth in the gradient of the solution. This estimate also allows us to give explicit convergence rates for time approximation of quadratic or superquadratic Markovian BSDEs.  相似文献   

3.
4.
This paper studies, under some natural monotonicity conditions, the theory (existence and uniqueness, a priori estimate, continuous dependence on a parameter) of forward–backward stochastic differential equations and their connection with quasilinear parabolic partial differential equations. We use a purely probabilistic approach, and allow the forward equation to be degenerate. Received: 12 May 1997 / Revised version: 10 January 1999  相似文献   

5.
In this paper, we are concerned with the numerical approximation of stochastic differential equations with discontinuous/nondifferentiable drifts. We show that under one-sided Lipschitz and general growth conditions on the drift and global Lipschitz condition on the diffusion, a variant of the implicit Euler method known as the split-step backward Euler (SSBE) method converges with strong order of one half to the true solution. Our analysis relies on the framework developed in [D. J. Higham, X. Mao and A. M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM Journal on Numerical Analysis, 40 (2002) 1041-1063] and exploits the relationship which exists between explicit and implicit Euler methods to establish the convergence rate results.  相似文献   

6.
We introduce a PDE approach to the large deviation principle for Hilbert space valued diffusions. It can be applied to a large class of solutions of abstract stochastic evolution equations with small noise intensities and is adaptable to some special equations, for instance to the 2D stochastic Navier–Stokes equations. Our approach uses a lot of ideas from (and in significant part follows) the program recently developed by Feng and Kurtz [J. Feng, T. Kurtz, Large Deviations for Stochastic Processes, in: Mathematical Surveys and Monographs, vol. 131, American Mathematical Society, Providence, RI, 2006]. Moreover we present easy proofs of exponential moment estimates for solutions of stochastic PDE.  相似文献   

7.
In this paper, we consider a class of stochastic partial differential equations (SPDEs) driven by a fractional Brownian motion (fBm) with the Hurst parameter bigger than 1/2. The existence of local random unstable manifolds is shown if the linear parts of these SPDEs are hyperbolic. For this purpose we introduce a modified Lyapunov-Perron transform, which contains stochastic integrals. By the singularities inside these integrals we obtain a special Lyapunov-Perron's approach by treating a segment of the solution over time interval [0,1] as a starting point and setting up an infinite series equation involving these segments as time evolves. Using this approach, we establish the existence of local random unstable manifolds in a tempered neighborhood of an equilibrium.  相似文献   

8.
9.
The solutions to a large class of non-linear parabolic PDEs are given in terms of expectations of suitable functionals of a tree of branching particles. A sufficient, and in some cases necessary, condition is given for the integrability of the stochastic representation, using a comparison scalar PDE.In cases where the representation fails to be integrable, a sequence of pruned trees is constructed, producing approximate stochastic representations that in some cases converge, globally in time, to the solution of the original PDE.  相似文献   

10.
Over the past few years quadratic Backward Stochastic Differential Equations (BSDEs) have been a popular field of research. However there are only very few examples where explicit solutions for these equations are known. In this paper we consider a class of quadratic BSDEs involving affine processes and show that their solution can be reduced to solving a system of generalized Riccati ordinary differential equations. In other words we introduce a rich and flexible class of quadratic BSDEs which are analytically tractable, i.e. explicit up to the solution of an ODE. Our results also provide analytically tractable solutions to the problem of utility maximization and indifference pricing in multivariate affine stochastic volatility models. This generalizes univariate results of Kallsen and Muhle-Karbe (2010) and some results in the multivariate setting of Leippold and Trojani (2010) by establishing the full picture in the multivariate affine jump-diffusion setting. In particular we calculate the interesting quantity of the power utility indifference value of change of numeraire. Explicit examples in the Heston, Barndorff-Nielsen–Shephard and multivariate Heston setting are calculated.  相似文献   

11.
Coupled systems for a class of quasilinear parabolic equations and the corresponding elliptic systems, including systems of parabolic and ordinary differential equations are investigated. The aim of this paper is to show the existence, uniqueness, and asymptotic behavior of time-dependent solutions. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients Di(ui) may have the property Di(0)=0 for some or all i=1,…,N, and the boundary condition is ui=0. Using the method of upper and lower solutions, we show that a unique global classical time-dependent solution exists and converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a scalar polynomial growth problem, a coupled system of polynomial growth problem, and a two component competition model in ecology.  相似文献   

12.
We consider a linear heat equation on a half line with an additive noise chosen properly in such a manner that its invariant measures are a class of distributions of Lévy processes. Our assumption on the corresponding Lévy measure is, in general, mild except that we need its integrability to show that the distributions of Lévy processes are the only invariant measures of the stochastic heat equation.  相似文献   

13.
14.
In this paper, we are concerned with the partial regularity of the stationary solution to semilinear elliptic equations. For almost all supercritical exponents, we improve the upper bounds of the Hausdorff dimension of the singular set, which are derived by Pacard, to the optimal ones.  相似文献   

15.
We study a class of reflected backward stochastic differential equations with nonpositive jumps and upper barrier. Existence and uniqueness of a minimal solution are proved by a double penalization approach under regularity assumptions on the obstacle. In a suitable regime switching diffusion framework, we show the connection between our class of BSDEs and fully nonlinear variational inequalities. Our BSDE representation provides in particular a Feynman–Kac type formula for PDEs associated to general zero-sum stochastic differential controller-and-stopper games, where control affects both drift and diffusion term, and the diffusion coefficient can be degenerate. Moreover, we state a dual game formula of this BSDE minimal solution involving equivalent change of probability measures, and discount processes. This gives in particular a new representation for zero-sum stochastic differential controller-and-stopper games.  相似文献   

16.
Stochastic partial differential equations driven by Poisson random measures (PRMs) have been proposed as models for many different physical systems, where they are viewed as a refinement of a corresponding noiseless partial differential equation (PDE). A systematic framework for the study of probabilities of deviations of the stochastic PDE from the deterministic PDE is through the theory of large deviations. The goal of this work is to develop the large deviation theory for small Poisson noise perturbations of a general class of deterministic infinite dimensional models. Although the analogous questions for finite dimensional systems have been well studied, there are currently no general results in the infinite dimensional setting. This is in part due to the fact that in this setting solutions may have little spatial regularity, and thus classical approximation methods for large deviation analysis become intractable. The approach taken here, which is based on a variational representation for nonnegative functionals of general PRMs, reduces the proof of the large deviation principle to establishing basic qualitative properties for controlled analogues of the underlying stochastic system. As an illustration of the general theory, we consider a particular system that models the spread of a pollutant in a waterway.  相似文献   

17.
We study a Linear–Quadratic Regulation (LQR) problem with Lévy processes and establish the closeness property of the solution of the multi-dimensional Backward Stochastic Riccati Differential Equation (BSRDE) with Lévy processes. In particular, we consider multi-dimensional and one-dimensional BSRDEs with Teugel’s martingales which are more general processes driven by Lévy processes. We show the existence and uniqueness of solutions to the one-dimensional regular and singular BSRDEs with Lévy processes by means of the closeness property of the BSRDE and obtain the optimal control for the non-homogeneous case. An application of the backward stochastic differential equation approach to a financial (portfolio selection) problem with full and partial observation cases is provided.  相似文献   

18.
In this paper we establish the large deviation principle for the stochastic quasi-geostrophic equation with small multiplicative noise in the subcritical case. The proof is mainly based on the weak convergence approach. Some analogous results are also obtained for the small time asymptotics of the stochastic quasi-geostrophic equation.  相似文献   

19.
In this paper, we establish the existence and uniqueness of solutions of systems of stochastic partial differential equations (SPDEs) with reflection in a convex domain. The lack of comparison theorems for systems of SPDEs makes things delicate.  相似文献   

20.
This paper is concerned with the problem of explosive solutions for a class of stochastic differential equations. Our main results are presented as two theorems. Theorem 1 is concerned with the existence of explosive solutions with positive probability under certain sufficient conditions. With some additional mild conditions, it is shown in Theorem 2 that the explosion will occur almost surely. The methods of auxiliary functions and cycles are used in the proofs. Several remarks about their applications are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号