首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The general properties of the wave-type solutions in the theory of internal waves for flows in continuously stratified media are analysed. In addition to the well-known cases of the equivalence of the conditions for the summation of plane non-linear periodic waves and the principle of the superposition of linear waves, the conditions for the existence of wave-type solutions for non-stationary and attached waves in dissipative media are determined. The sets of relations of the physical parameters which can be used as expansion parameters when constructing approximate (asymptotic) solutions of the equations of internal waves in dissipative media are determined.  相似文献   

2.
The framework of the linear mechanics of liquid crystal media [1] is used to study propagation of waves in a layer of a nematic liquid crystal (NLC) on an inclined plane, in a magnetic field, for three different cases of orientation of the anisotropy axis, namely orthogonal to the inclined plane, parallel to the inclined plane and orthogonal to the plane of flow. Such orientations of the anisotropy axis are realized in practice in the course of special machining of solid surfaces [2]. Exact solutions of the equations of motion are obtained describing the steady flow of the layer, and the behavior of small plane perturbations is studied. It is shown that two types of plane waves can propagate in a layer of the nematic mesophase, namely, the surface and the orientational waves. In the case of long surface waves the formulas for the critical Reynolds number are obtained. For the orientational waves a sufficient criterion of stability of the flow in the layer is obtained for two cases. The influence of the magnetic field and of the rheological parameters of NLC on the character of propagation of the first and second type waves is investigated.From amongst the papers dealing with wave propagation in NLC, we draw the readers' attention to [3] which deals with the longitudinal, shear and torsional waves in a liquid crystal domain and obtains the corresponding dispersion relationships.  相似文献   

3.
A uniform asymptotics of the surface Love modes for a special case of anisotropy (tranverse isotropy) of an elastic media is obtained. In constructing the asymptotics of surface waves, the space-time (ST) ray method is employed. The wave field of each Love mode is represented as the sum of the ST caustic expansion involving the Airy functions with a real eikonal and two correction terms that are ST ray solutions, which in fact are inhomogeneous waves with complex eikonals. The eikonals and coefficients of the caustic and ray series are sought in the form of expansions in powers of two variables. The first variable is the distance from the surface, whereas the other characterizes the proximity of the caustic of a ray field to the boundary surface. Thanks to the specific structure of the elasticity tensor for a transversely isotropic medium, the boundary surface is necessarily a plane. A recursion process of computation of higher terms of the asymptotic expansion allows one to trace the conversion of the formulas obtained to the known ray solutions for isotropic elastic media. Relations between the elasticity parameters of a medium are obtained that ensure the existence of SH Love waves in a transversely isotropic medium and that are consistent with the conditions of the positiveness of the elastic energy of deformation. Bibliography: 6 titles.  相似文献   

4.
二维各向异性压电介质机电耦合场的基本解   总被引:3,自引:2,他引:1  
本文研究各向异性压电介质的机电耦台问题.应用平面波分解法和留数定理,首次得到了线力和线电荷作用下一般二维各向异性压电介质机电耦合场的基本解.本文的解适用于平面问题、反平面问题以及平面和反平面相互耦合问题.作为特例,文中给出了横观各向同性压电介质的基本解.  相似文献   

5.
含椭圆孔或裂纹压电介质平面问题的基本解   总被引:3,自引:0,他引:3  
应用复变函数的方法,并基于精确的电边界条件,导出了含一椭圆孔或裂纹的横观各向同性压电体在任意集中力和集中电荷作用下的复变函数解,即Cren函数解·叠加该解,得到了裂纹表面作用任意集中载荷或分布载荷时的一般解·这些解不但澄清了从前文献中一些不合理的结果,同时也为应用边界元法求解更复杂的压电介质断裂力学问题提供了基本解·  相似文献   

6.
Results of a study of variational inequalities appearing in dynamic problems of the theory of elastic-ideally plastic Prandtl-Reuss flow are given. The concept of a generalized solution is formulated for the general-type inequality and is used to construct the complete system of relations for a strong discontinuity. A priori estimates are obtained which make it possible to prove the uniqueness and continuous dependence “in the small” on time of the solutions of the Cauchy problem and initial-boundary value problems with dissipative boundary conditions, as well as the estimates of the nearness of the solutions of the variational inequality and of the system of equations with a small parameter describing the elasto-viscoplastic deformation of the bodies. The problem of the propagation of plane waves in an elastoplastic half-space with initial stresses is used as an example to illustrate the difference between the discontinuous solutions with the Mises yield condition and with the Tresca-St Venant consition in the theory of flows.  相似文献   

7.
In the framework of the Cosserat continuum model, one-dimensional solutions describing plane longitudinal waves, transverse (shear) waves with particle rotation, and torsional waves are analyzed. Boundary symmetry conditions for various types of loading are found. A parallel computational algorithm is worked out for solving 3D dynamic problems of the Cosserat elasticity theory on multiprocessor computer systems. Computations of the propagation of the stress and strain waves induced by a point impulse force in an elastic medium are performed.  相似文献   

8.
A functional a posteriori estimate is obtained for control of the accuracy of approximate solutions to plane problems arising in the Cosserat theory of elasticity. We deal with the case where displacements and independent rotation are given on the boundary of the domain, a continuous medium is isotropic, and there is a linear dependence between stresses and strains. The proposed method is based on the duality theory of Calculus of Variations and can be also applied to the case of anisotropic media.  相似文献   

9.
A class of problems arising in seismic exploration are investigated, namely, seismic signal propagation in multilayered geological rock and near-surface disturbance propagation in massive rock with heterogeneities, such as empty or filled fractures and cavities. Numerical solutions are obtained for wave propagation in such highly heterogeneous media, including those taking into account the plastic properties of the rock, which can be manifested near a seismic gap or a wellbore. All types of explosion-generated elastic and elastoplastic waves and waves reflected from fractures and the boundaries of the integration domain are analyzed. The identification of waves in seismograms recorded with near-surface receivers is addressed. The grid-characteristic method is used on triangular, parallelepipedal, and tetrahedral meshes with boundary conditions set on the rock-fracture interface and on free surfaces in explicit form. The numerical method proposed is suitable for the study of the interaction between seismic waves and heterogeneous inclusions, since it ensures the most correct design of computational algorithms on the boundaries of the integration domain and at media interfaces. A parallel software code implemented with the help of OpenMP and MPI was used to execute computations on parallelepipedal and tetrahedral grids.  相似文献   

10.
A numerical method is developed for studying normal electroelastic waves in a layer of piezoelectric materials with mm2 rhombic symmetry, and a second order thickness atris of symmetry. The main system of equations is reduced to eight hamiltonian-type equations in the thickness coordinate. For harmonic waves, the generalized spectral problem is solved numerically taking into account the even (odd) character of the solution with respect to the central plane of the layer. Some solutions of specific problems are analyzed. Translated from Teoreticheskaya i Prikladnaya Mekhanika, No. 30, pp. 162–169, 1999.  相似文献   

11.
A problem on the dynamic instability of soliton solutions (solitary waves) of Hamilton's equations, describing plane waves in non-linear elastic composite media with or without anisotropy, is considered. In the anisotropic case, there are two two-parameter families of solitary waves: fast and slow and, when there is no anisotropy, there is one three-parameter family. A classification of the instability of solitary waves of the fast family in the anisotropic case and of representatives of families of solitary waves, the velocities of which lie outside of the range of stability when there is anisotropy and when there is no anisotropy, is given on the basis of a numerical solution of a Cauchy problem for the model equations. In this paper, the fundamental equations describing plane waves in non-linear, anisotropic, elastic composites are derived, the Hamilton form of the basic equations is presented, the symmetries in the anisotropic and isotropic cases are considered, the conserved quantities and the soliton solutions, that is, the solitary waves are presented, the nature of the instability of representatives of all three families is investigated, brief formulation of the results is presented and problems of the instability of the fast family in the anisotropic case and of representatives of the families, the velocities of which lie outside of the range of stability in the presence and absence of anisotropy (explosive instability), are discussed.  相似文献   

12.
Solutions of the non-linear hyperbolic equations describing quasi-transverse waves in composite elastic media are investigated within the framework of a previously proposed model, which takes into account small dissipative and dispersion processes. It is well known for this model that if a solution of the problem of the decay of an arbitrary discontinuity is constructed using Riemann waves and discontinuities having a structure, the solution turns out to be non-unique. In order to study the problem of non-uniqueness, solutions of non-self-similar problems are constructed numerically within the framework of the proposed model with initial data in the form of a “smooth” step. With time passing the solutions acquire a self-similar asymptotic form, corresponding to a certain solution of the problem of the decay of an arbitrary discontinuity. It is shown that, by changing the method of smoothing the step, one can construct any of the self-similar asymptotic forms, as was done previously in Ref. [Chugainova AP. The asymptotic behaviour of non-linear waves in elastic media with dispersion and dissipation. Teor Mat Fiz 2006;147(2):240–56] for media with terms of opposite sign, responsible for the non-linearity, although the set of admissible discontinuities and the structure of the solutions of the problems in these cases turn out to be different.  相似文献   

13.
The linearized problem of the generation of flows of a continuously stratified fluid by means of the moving part of a stationary infinite inclined plane is solved, taking account of the effects of diffusion, by the methods of the theory of singular perturbations. The moving part of the plane executes longitudinal periodic oscillations. The results obtained contain components that are regularly perturbed with respect to dissipative factors, that is, internal waves and a family of singularly perturbed components, two of which are due to the action of viscosity and a further one due to the effect of diffusion. The solutions of the problems in two-dimensional and one-dimensional formulations correspond to limit cases and the Stokes solution when buoyancy effects are neglected. The internal wave calculations are in satisfactory agreement with aboratory data.  相似文献   

14.
A new representation is obtained for the equations describing the dynamics of an incompressible fluid in a rotating plane and the fundamental properties of this representation are considered. New exact solutions, which describe steady flows of an ideal fluid and, in particular, exact steady-state solutions for waves close to the critical layer are constructed using it.  相似文献   

15.
Plane wave approximation of homogeneous Helmholtz solutions   总被引:1,自引:0,他引:1  
In this paper, we study the approximation of solutions of the homogeneous Helmholtz equation Δu + ω 2 u = 0 by linear combinations of plane waves with different directions. We combine approximation estimates for homogeneous Helmholtz solutions by generalized harmonic polynomials, obtained from Vekua’s theory, with estimates for the approximation of generalized harmonic polynomials by plane waves. The latter is the focus of this paper. We establish best approximation error estimates in Sobolev norms, which are explicit in terms of the degree of the generalized polynomial to be approximated, the domain size, and the number of plane waves used in the approximations.  相似文献   

16.
In this paper, we study the approximation of solutions of the homogeneous Helmholtz equation Δu + ω 2 u = 0 by linear combinations of plane waves with different directions. We combine approximation estimates for homogeneous Helmholtz solutions by generalized harmonic polynomials, obtained from Vekua’s theory, with estimates for the approximation of generalized harmonic polynomials by plane waves. The latter is the focus of this paper. We establish best approximation error estimates in Sobolev norms, which are explicit in terms of the degree of the generalized polynomial to be approximated, the domain size, and the number of plane waves used in the approximations.  相似文献   

17.
Boundary value problems in the plane moment and simplified moment elasticity theory of inhomogeneous isotropic media are reduced to Riemann-Hilbert boundary value problems for a quasianalytic vector. Uniquely solvable integral equations over a domain are derived. As a result, weak solutions for composite inhomogeneous elastic media can be determined straightforwardly.  相似文献   

18.
The structure of solutions of gasdynamic equations is investigated in the case of unsteady double waves in the neighborhood of the quiescent region. A general concept of double waves is presented in the form of special series with logarithmic terms. Results of numerical computations are given.The problem of determining the flow of plane and three-dimensional waves separated from the quiescent region by a weak discontinuity was considered in [1–3], where approximate solutions were derived for that neighborhood, and the formulation of boundary value problems required for solving the equation for the analog of the velocity potential in the hodograph plane was investigated.The more general problem (without the assumption of the degeneration of motion) of arbitrary potential flows of polytropic gas adjacent to the quiescent region and separated by a weak discontinuity was considerd in [4–8]. Solution of that problem was obtained in the form of special series in powers of the mo dulus of the velocity vector r in the space of the time hodograph. The value r = 0 corresponds to the surface of weak discontinuity that separates the perturbed motion region from that at rest. Some applications of derived solutions to problems such as the motion of a convex piston and the propagation of weak shock waves were also investigated in those papers. Convergence in the small of obtained series was proved in [9]. However the attempts of constructing series in powers of r, which were used in [4–8] for the presentation of equations of double waves in the neighborhood of the quiescent region, proved to be unsuccessful.Although parts of expansions in series in powers of r (accurate to within 0 (r2)), were constructed in [1–3], it was found that the coefficient at r8 in equations for double waves cannot be determined owing to the insolvability of its equation. This is related to the fact that the surface r = 0in the case of equations for double waves is simultaneously a line of parabolic degeneration and a characteristic.The object of the present note is the formulation of solutions of equations for plane unsteady double waves in the neighborhood of the quiescent region. Parts of the derived series, which generally are nonanalytic functions of r, can be used for defining flows at small r in particular those downstream of two-dimensional normal detonation waves [10] or in problems of angular pistons [11]. The method used for the derivation of series can be also applied in investigations of threedimensional self-similar flows with variables x1/x3 and x2/x3 (steady flows) or x1/t, x2/t and x3/t (unsteady flows). However it was not possible to obtain in such cases regular series in powers of r.  相似文献   

19.
Biot [5] examined the propagation of waves along the free surface of a cylindrical cavity in an elastic body of infinite extent and obtained a dispersion relation for the velocity of this wave in terms of the ratio of the wavelength to the cavity diameter. This paper contains solutions for waves in a semiinfinite elastic medium with a cylindrical cavity with axially symmetric harmonic loading of the plane surface. The solutions are expressed in terms of Lame potentials which are represented by combinations of integrals containing trigonometric kernels and kernels of Weber transforms. A solution is obtained for volume waves and Biot waves. The relative velocity and relative length of surface waves are studied as functions of the loading frequency.  相似文献   

20.
The present article considers general problems of the theory of the elastic stability of composite media in the presence of finite and small precritical deformations with an arbitrary elastic-potential form. Our investigation was conducted for homogeneous and piecewise-homogeneous anisotropic media. Numerical results were obtained for laminar media. We have elucidated the case in which there is internal loss of stability (in the material structure) for compressible materials with small deformations (plane problem) and for incompressible materials with highly elastic deformations (plane and three-dimensional problems) for the Treloar and Mooney potentials.Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Mekhanika Polimerov, No. 2, pp. 267–275, March–April, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号