共查询到15条相似文献,搜索用时 62 毫秒
1.
木质素模化物紫丁香酚热解机理的量子化学研究 总被引:3,自引:0,他引:3
采用密度泛函理论方法B3LYP/6-31G++(d,p),对木质素模化物紫丁香酚的热解反应机理进行了量子化学理论研究。提出了三种可能的热解反应途径,对各种反应的反应物、产物、中间体和过渡态的结构进行了能量梯度全优化。计算了各热解反应途径的标准动力学参数,分析了各种主要热解产物的形成演化机理。键离解能计算结果表明,紫丁香酚中CH3-O键的键离解能最小,各种键离解能的大小顺序为CH3-O < O-H < CH3O-Caromatic < CH2-H < HO-Caromatic < Caromatic-H。在反应路径(1)中,主要热解产物是3-甲氧基邻苯二酚,其形成反应的总能垒为366.6 kJ/mol;在反应路径(2)中主要热解产物是2-甲氧基-6-甲基苯酚,其形成反应的总能垒为474.8 kJ/mol;在反应路径(3)中形成邻甲氧基苯酚的总能垒很低,为21.4 kJ/mol,这表明,在连接甲氧基的碳原子上加氢后能够有效地降低木质素芳环模化物紫丁香酚去甲氧基反应的反应能垒。 相似文献
2.
半纤维素模型化合物热解机理的理论研究 《燃料化学学报》2016,44(8):911-920
针对半纤维素模型化合物4-O-甲基葡萄糖醛酸的热解,提出了六种可能的反应路径,对各种反应路径中的反应物、产物、中间体和过渡态的结构进行了几何结构全优化,计算了各步反应的标准动力学参数。结果表明,4-O-甲基葡萄糖醛酸热解时,首先通过分子内的氢原子转移发生开环反应而形成链状中间体,然后中间体进一步分解,主要产物是甲醇、乙醇醛、2-羟基-3-甲氧基丁醛酸、乙二醛和2-羟基丁醛酸等;主要的热解竞争产物是甲酸、CO_2、CO、4-羟基-3-丁烯酮和甲基乙烯醚等。在半纤维素的热解中,CO_2是通过不饱和反应物或中间体脱羧基反应而形成,乙酸则是通过脱O-乙酰基反应而形成。 相似文献
3.
采用密度泛函理论方法,对四种β-O-4型二聚体木质素模型化合物2-(2-甲氧基苯氧基)-1-苯基乙烷-1-醇、2-(2-甲氧基苯氧基)-1-苯基乙烷-1-酮、1-甲氧基-2-(2-甲氧基-2-苯基乙氧基)苯、2-(2-甲氧基苯氧基)-1-苯乙基乙酸酯的C_(aromatic)-O、C_(aromatic)-C_α、C_α-C_β、C_β-O键均裂解离能进行了理论计算,并对所述二聚体的热解均裂历程进行了理论计算研究,分析了不同二聚体的热解产物形成途径。结果表明,C_β-O键均裂是二聚体初次热解的主要反应,C_α-C_β键均裂是竞争反应。C_α-OH官能团被氧化、乙酰化修饰后,C_β-O键均裂解离能降低,而C_α-C_β键的键解离能升高,C_β-O键裂解概率增大,C_α-C_β键均裂竞争性降低。基于上述四种模型化合物热解的主要芳香族产物有苯甲醇、甲苯、苯甲醛和愈创木酚等,C_α-OH官能团的选择性修饰可调控热解产物种类,其中,氧化修饰后的二聚体的热解产物种类变少,产物选择性增强;甲基化、乙酰化修饰后的二聚体热解可产生苯乙烷和甲苯。 相似文献
4.
β-1型木质素二聚体高温蒸汽气化机理的理论研究 总被引:1,自引:0,他引:1
以β-1型木质素二聚体为研究对象,采用以密度泛函理论B3LYP/6-31G(d,p)为基础的Gaussian工具包对该木质素二聚体的高温纯蒸汽气化反应过程进行了分子动力学模拟研究。结果表明,在木质素二聚体高温蒸汽气化的初反应中,R4和R5的反应焓变较小分别为243.9和323.2 kJ/mol,Cα-Cβ键和Cβ-C1键较易断裂。通过计算次反应路径的势垒,发现R4-1和R5-1反应的势垒较小分别为4.4和24.0 kJ/mol,因此,在该气化过程中会优先选择R4-1和R5-1路径。该反应路径最后得到的产物有甲醇、乙醇、苯酚、对羟基甲苯和对羟基苯甲醛,与实验产物吻合。 相似文献
5.
采用密度泛函理论方法 B3LYP/6-31G++(d,p),对纤维素的一个循环单体β-D-吡喃葡萄糖的热解反应机理进行了量子化学理论研究。设计了四种可能的热解反应途径,对各种反应的反应物、产物、中间体和过渡态的结构进行了能量梯度全优化,计算了各热解反应途径的标准动力学参数。计算结果表明,反应路径1中速控步的活化能为297.02 kJ.mol,反应路径2中速控步的活化能为284.49 kJ.mol,与反应路径3,4相比,反应路径1,2的反应能垒更低,是主要的热解反应通道,乙醇醛、1-羟基-2-丙酮、5-羟甲基糠醛、CO等小分子产物是热解的主要产物。这与相关实验结果分析是一致的。 相似文献
6.
7.
采用密度泛函理论(DFT)方法 M06-2X/6-311G(d)研究了聚对苯二甲酸丁二醇酯(PBT)二聚体的热降解机理,对PBT二聚体热解过程设计了八条可能反应路径,计算了每条反应路径的各基元反应步的热力学及动力学参数。计算结果表明,在PBT初始热解过程中,主链发生协同反应的反应能垒明显低于自由基反应的能垒,因此,通过协同反应生成的对苯二甲酸、对苯二甲酸单丁烯酯、对苯二甲酸二丁烯酯和二对苯二甲酸-1,4-丁二酯是PBT初始热解主要产物。主链通过六元环过渡态进行的协同反应的反应能垒低于通过四元环过渡态的,PBT主链的断裂主要通过六元环过渡态的协同反应而进行。此外,还讨论了PBT主要产物的二次降解反应,研究发现,在二次降解反应过程中主要以协同反应为主,生成1,3-丁二烯、四氢呋喃、苯、CO2、苯甲酸等主要产物。 相似文献
8.
9.
采用密度泛函理论B3LYP/6-31++G(d,p)方法,对纤维素热解的主要产物左旋葡聚糖的热解反应机理进行了理论计算分析,设计了四种可能的热解反应途径, 对各种反应的反应物、产物和过渡态的结构进行了能量梯度全优化。计算结果表明,左旋葡聚糖开环成链状中间体时,首先,左旋葡聚糖中的两个半缩醛键C(1)-O(7)和C(6)-O(8)断裂,经过渡态TS1形成中间体IM1,同时,C(6)-O(7)结合成键使C(5)-C(6)-O(7)形成环状结构,该反应的能垒较高,为296.53 kJ/mol,然后IM1经过渡态TS2转变为中间体IM2,该反应的能垒为234.09 kJ/mol;对IM2设计了四条可能的反应路径,反应路径2和3能垒较低,是IM2最可能的热解反应途径;在反应路径1和4中都包含了脱羰基反应,其反应能垒较高,不易发生。 相似文献
10.
11.
为了从微观上理解半纤维素热解过程及其主要产物的形成演变机理,采用密度泛函理论方法B3LYP/6-31G++(d,p),对O-乙酰基-吡喃木糖的热解反应机理进行了量子化学理论研究。在热解过程中,O-乙酰基-吡喃木糖中的O-乙酰基首先脱出,形成乙酸和中间体IM1,该步反应能垒为269.4 kJ/mol。IM1进一步发生开环反应形成IM2,开环反应能垒较低,为181.8 kJ/mol。对中间体IM2设计了四种可能的热解反应途径,对各种反应的反应物、产物、中间体和过渡态的结构进行了能量梯度全优化,计算了各热解反应途径的热力学和动力学参数。计算结果表明,反应路径(4)和反应路径(2)是O-乙酰基-吡喃木糖热解的主要反应通道,乙酸、乙醛、乙醇醛、丙酮、CO、CO2、CH4等小分子产物是热解的主要产物。这与相关实验结果分析是一致的。 相似文献
12.
纤维素热解形成左旋葡聚糖机理的理论研究 《燃料化学学报》2011,39(8):590-594
采用密度泛函理论UB3LYP/6-31G(d)方法,对模型化合物纤维二糖热解反应机理进行了量子化学理论计算研究。设计了三种可能的热解反应途径,对各种反应的反应物、产物、中间体和过渡态的结构进行了能量梯度全优化,计算了不同温度下热解反应的标准热力学和动力学参数。计算结果表明,糖苷键均裂而形成两个自由基中间体IM1a和IM1b,吸收热量为321.26kJ/mol,中间体IM1a经过渡态TS1a进一步形成左旋葡聚糖P1,反应势垒为202.72kJ/mol;与分步反应相比,纤维二糖经过渡态TS2协同反应直接形成左旋葡聚糖P1和吡喃葡萄糖P2的反应势垒低于分步反应的总势垒,其反应势垒为377.54kJ/mol;H+的加入有利于糖苷键的断裂,断裂形成的中间体IM3很难进一步反应形成左旋葡聚糖。 相似文献
13.
四氢化萘热解中甲基茚满生成机理的密度泛函计算 《燃料化学学报》2012,40(10):1188-1193
采用量子化学密度泛函方法对四氢化萘热解过程中甲基茚满的生成机理进行计算。结果表明,热解产物甲基茚满的主要存在形式是1-甲基茚满;其主要生成反应途径是,首先通过自由基和四氢化萘间的氢转移反应生成β-四氢化萘基,然后β-四氢化萘基上的氢化芳环经缩环反应生成1-甲基茚满。提高温度能促进1-甲基茚满生成反应的进行,但对其生成反应路径没有太大影响。 相似文献
14.
15.
纤维素是生产生物质燃料,精细化工品的重要原料. 热解是由纤维素解聚的重要手段之一. 了解纤维素热解的反应机理对发展高效的生物质转化技术具有重要意义. 我们利用密度泛函理论方法,以纤维素二聚体为模型,详细研究了其发生键均裂过程的热力学能量变化. 发现糖苷键和侧链C—C键的均裂相对于C—OH键和O—H键均裂在热力学上更优. 此外,我们发现不同物种的热力学稳定性与其在纤维素快速热解实验产物中的比例无关. 最后我们发现温度对反应能否自发发生具有重要的影响,为通过调节温度来改变不同类型反应的选择性提供了一条思路. 相似文献