首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A low-cost semi-analysis finite element technique, named the finite piece method (FPM) is presented in this article. It aims to solve three-dimensional (3D) viscoelastic slit flows. The viscoelastic stress of the fluid is modelled using an K-BKZ integral constitutive equation of the Wagner type. Picard iteration is used to solve non-linear equations. The FPM is tested on flow problems in both planar and contraction channels. The accuracy of the method is assessed by comparing flow distributions and pressure with results obtained by 3D finite element method (FEM). It shows that the solution accuracy is excellent and a substantial amount of computing time and memory requirement can be saved.  相似文献   

2.
A weakly compressible smoothed particle hydrodynamics (WCSPH) method is used along with a new no-slip boundary condition to simulate movement of rigid bodies in incompressible Newtonian fluid flows. It is shown that the new boundary treatment method helps to efficiently calculate the hydrodynamic interaction forces acting on moving bodies. To compensate the effect of truncated compact support near solid boundaries, the method needs specific consistent renormalized schemes for the first and second-order spatial derivatives. In order to resolve the problem of spurious pressure oscillations in the WCSPH method, a modification to the continuity equation is used which improves the stability of the numerical method. The performance of the proposed method is assessed by solving a number of two-dimensional low-Reynolds fluid flow problems containing circular solid bodies. Wherever possible, the results are compared with the available numerical data.  相似文献   

3.
4.
This paper presents a numerical model to study the laminar flows induced in confined spaces by natural convection. A control volume finite‐element method (CVFEM) with equal‐order meshing is employed to discretize the governing equations in the pressure–velocity formulation. In the proposed model, unknown variables are calculated in the same grid system using different specific interpolation functions without pressure correction. To manage memory storage requirements, a data storage format is developed for generated sparse banded matrices. The performance of various Krylov techniques, including Bi‐CGSTAB (Bi‐Conjugate Gradient STABilized) with an incomplete LU (ILU) factorization preconditioner is verified by applying it to three well‐known test problems. The results are compared to those of independent numerical or theoretical solutions in literature. The iterative computer procedure is improved by using a coupled strategy, which consists of solving simultaneously the momentum and the continuity equation transformed in a pressure equation. Results show that the strategy provides useful benefits with respect to both reduction of storage requirements and central processing unit runtime. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A partially implicit method for the unsteady compressible Navier-Stokes equations is developed. The method is based on an explicit treatment of streamwise fluxes and an implicit treatment of normal fluxes. This leads to a linear system which is generated by an efficient finite difference procedure and which is block pentadiagonal. The method is tested on a shock-induced oscillatory flow over an aerofoil. Parallel implementations of an explicit, fully implicit and partially implicit method are investigated.  相似文献   

6.
7.
8.
A USM-Θ two-phase turbulence model for simulating dense gas-particle flows   总被引:1,自引:0,他引:1  
A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM- model), combining the unified second-order moment two-phase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM- model is also better than the k--kp- model and the k--kp-p- model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot.The project supported by the Special Funds for Major State Basic Research of China (G-1999-0222-08), the National Natural Science Foundation of China (50376004), and Ph.D. Program Foundation, Ministry of Education of China (20030007028)  相似文献   

9.
From thermodynamic theory, a new three-dimensional model for elastoviscoplastic fluid flows is presented. It extends both the Bingham viscoplastic and the Oldroyd viscoelastic models. Fundamental flows are studied: simple shear flow, uniaxial elongation and large amplitude oscillatory shear. The complex moduli (G,G)(G,G) are found to be in qualitative agreement with experimental data for materials that present microscopic network structures and large scale rearrangements. Various fluids of practical interest, such as liquid foams, droplet emulsions or blood, present such elastoviscoplastic behavior: at low stress, the material behaves as a viscoelastic solid, whereas at stresses above a yield stress, the material behaves as a fluid.  相似文献   

10.
A pressure-based, Mach-uniform method is developed by combining the SLAU2 numerical scheme and the higher temporal order pressure-based algorithm. This hybrid combination compensates the limitation of the SLAU2 numerical scheme in the low-Mach number regime and deficiencies of the pressure-based method in the high-Mach number regime. A momentum interpolation method is proposed to replace the Rhie-Chow interpolation for accurate shock-capturing and to alleviate the carbuncle phenomena. The momentum interpolation method is consistent in addition to preserving pressure–velocity coupling in the incompressible limit . The postulated pressure equation allows the algorithm to compute the subsonic flows without empirical scaling of numerical dissipation at low-Mach number computation. Several test cases involving a broad range of Mach number regimes are presented. The numerical results demonstrate that the present algorithm is remarkable for the calculation of viscous fluid flows at arbitrary Mach number including shock wave/laminar boundary layer interaction and aerodynamics heating problem.  相似文献   

11.
The two-fluid model is widely adopted in simulations of dense gas-particle flows in engineering facili- ties. Present two-phase turbulence models for two-fluid modeling are isotropic. However, turbulence in actual gas-particle flows is not isotropic. Moreover, in these models the two-phase velocity correlation is closed using dimensional analysis, leading to discrepancies between the numerical results, theoretical analysis and experiments. To rectify this problem, some two-phase turbulence models were proposed by the authors and are applied to simulate dense gas-particle flows in downers, risers, and horizontal channels; Experimental results validate the simulation results. Among these models the USM-O and the two-scale USM models are shown to give a better account of both anisotropic particle turbulence and particle-particle collision using the transport equation model for the two-phase velocity correlation.  相似文献   

12.
A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the single-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model) in most regions. The project supported by the Special Funds for Major State Basic Research, China (G-1999-0222-08), and the Postdoctoral Science Foundation (2004036239) The English text was polished by Keren Wang  相似文献   

13.
This paper describes a domain decomposition numerical procedure for solving the Navier-Stokes equations in regions with complex geometries. The numerical method includes a modified version of QUICK (quadratic upstream interpolation convective kinematics) for the formulation of convective terms and a central difference scheme for the diffusion terms. A second-order-accurate predictor-corrector scheme is employed for the explicit time stepping. Although the momentum equations are solved independently on each subdomain, the pressure field is computed simultaneously on the entire flow field. A multigrid technique coupled with a Schwarz-like iteration method is devised to solve the pressure equation over the composite domains. The success of this strategy depends crucially on appropriate methods for specifying intergrid pressure boundary conditions on subdomains. A proper method for exchanging information among subdomains during the Schwarz sweep is equally important to the success of the multigrid solution for the overall pressure field. These methods are described and subsequently applied to two forced convection flow problems involving complex geometries to demonstrate the power and versatility of the technique. The resulting pressure and velocity fields exhibit excellent global consistency. The ability to simulate complex flow fields with this method provides a powerful tool for analysis and prediction of mixing and transport phenomenon.  相似文献   

14.
This work presents a mixed three‐dimensional finite element formulation for analyzing compressible viscous flows. The formulation is based on the primitive variables velocity, density, temperature and pressure. The goal of this work is to present a ‘stable’ numerical formulation, and, thus, the interpolation functions for the field variables are chosen so as to satisfy the inf–sup conditions. An exact tangent stiffness matrix is derived for the formulation, which ensures a quadratic rate of convergence. The good performance of the proposed strategy is shown in a number of steady‐state and transient problems where compressibility effects are important such as high Mach number flows, natural convection, Riemann problems, etc., and also on problems where the fluid can be treated as almost incompressible. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A finite volume, time‐marching for solving time‐dependent viscoelastic flow in two space dimensions for Oldroyd‐B and Phan Thien–Tanner fluids, is presented. A non‐uniform staggered grid system is used. The conservation and constitutive equations are solved using the finite volume method with an upwind scheme for the viscoelastic stresses and an hybrid scheme for the velocities. To calculate the pressure field, the semi‐implicit method for the pressure linked equation revised method is used. The discretized equations are solved sequentially, using the tridiagonal matrix algorithm solver with under‐relaxation. In both, the full approximation storage multigrid algorithm is used to speed up the convergence rate. Simulations of viscoelastic flows in four‐to‐one abrupt plane contraction are carried out. We will study the behaviour at the entrance corner of the four‐to‐one planar abrupt contraction. Using this solver, we show convergence up to a Weissenberg number We of 20 for the Oldroyd‐B model. No limiting Weissenberg number is observed even though a Phan Thien–Tanner model is used. Several numerical results are presented. Smooth and stable solutions are obtained for high Weissenberg number. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
We simulated the flow of a yield stress fluid around a gas bubble using an augmented Lagrange approach. The piecewise linear equal‐order finite elements for both the velocity and the pressure approximations proposed and analyzed by Latché and Vola in 2004 were applied. A mesh adaptive strategy based on this element‐pair choice was also proposed to render the yield surfaces of desired resolution. The corresponding numerical scheme was formulated for general Herschel–Bulkley fluids. Numerical results on Bingham fluid flows around a slowly rising spherical gas bubble were provided to validate the proposed algorithm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Convective coupled map for simulating spatiotemporal chaos in flows   总被引:3,自引:0,他引:3  
A coupled map lattices with convective nonlinearity or, for short, Convective Coupled Map (CCM) is proposed in this paper to simulate spatiotemporal chaos in fluid flows. It is found that the parameter region of spatiotemporal chaos can be determined by the maximal Liapunov exponent of its complexity time series. This simple model implies a similar physical mechanism for turbulence such that the route to spatiotemporal chaos in fluid flows can be envisaged. The study is supported by “Nonlinear Sciences Project” from the State Science and Technology Commission of China.  相似文献   

18.
A new technique for the numerical simulation of the free surface flows is developed. This technique is based on the finite element method with penalty formulation, and a flux method for surface advection. The advection part which is completely independent of the momentum solver is based on subdividing the fluid domain into small subvolumes along one of the co-ordinate axis. The subvolumes are then used to find the height function which will later describe the free surface. The free surface of the fluid in each subvolume is approximated by a line segment and its slope is calculated using the volume of the fluid in the two neighbouring subvolumes. Later, the unidirectional volume flux from one subvolume to its neighbouring one is calculated using the conservation laws, and the new surface line segments are reconstructed. This technique, referred to as the Height–Flux Method (HFM) is implemented to simulate the temporal instability of a capillary jet. The results of the numerical simulation well predict the experimental data. It is also shown that the HFM is computationally more efficient than the techniques which use a kinematic boundary condition for the surface advection.  相似文献   

19.
Exact solutions to the plane and axi-symmetric stagnation flows of an Oldroyd-B fluid are reported. It is found that a steady flow is possible if the Weissenberg numberWi, defined by the product of the Maxwellian relaxation time and the shear rate at infinity, satisfies – 1/2 <Wi < 1/m, wherem = 1 in an axisym-metric flow andm = 2 in a plane flow. Furthermore, the fluid elasticity always decreases the boundary-layer thickness. An Oldroyd-B fluid with the parameters matched those of a typical Boger fluid behaves essentially like a Newtonian fluid in a stagnation flow.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号