首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Crystals of (NH3OH)3GaF6 have been isolated from aqueous solution. The compound crystallizes triclinic, with cell parametersa=6.539(5) Å,b=6.924(5) Å,c=9.403(1) Å, =87.01(9)°, =83.98(8)°, =70.28(8)°. The thermal decomposition was studied by TG and DSC analysis.
  相似文献   

2.
Summary Two microcristalline phases have been isolated from aqueous solutions: (NH3OH)2AlF5(A) and (NH3OH)AlF4·H2O(B). They crystallize in the orthorhombic system with cell parameters for A:a=6.475 (3) Å,b=7.295 (3) Å,c=10.827 (5) Å, and for B:a=7.003 (3) Å,b=8.489 (4) Å,c=10.745 (5) Å. The Hydroxylammonium-aluminates were characterized by vibrational spectroscopy and their thermal decomposition studied by DSC and TG analysis.
  相似文献   

3.
The crystal structure of the new phase Cu7(OH)6(TeO3)2(SO4)2 [a=7.389 (1),b=7.638 (1),c=7.662 (2) Å, =75.17 (1), =75.90 (1), =84.19 (1)°;Z=1] was determined by direct methods andFourier summations from X-ray intensities, and was refined in space group P -C i 1 toR=0.039. As usual, the Cu(II) atoms are coordinated to four O atoms forming approximately a square with average Cu-O=1.96 (3) Å; one or two more distant O neighbours complete the coordination. The shape of the TeO3 group is a rather clear-cut trigonal pyramid. A disorder was found for the SO4 tetrahedra. The compound was synthesized under hydrothermal conditions [500 (10) K, saturation vapour pressure].
Herrn Prof. Dr.K. Komarek zum 60. Geburtstag gewidmet.  相似文献   

4.
Crystals of K2Co3(OH)2(SO4)3·2H2O were synthesized under hydrothermal conditions. The crystal structure [a=17.945 (4) Å,b=7.557 (2) Å,c=9.760 (3) Å, space group Cmc21,Z=4] was determined by direct methods and refined with single crystal X-ray data. The H atoms were located byFourier syntheses. Their structural parameters were refined, too. The finalR-values areR=0.025 andR w =0.028 (w=1/) for 612 reflections withF 0>3 (F 0). Both Co(II) atoms are octahedral six coordinated and form zigzag chains running parallel [001]. These chains are connected via sulfate groups to built up sheets parallel (100). The KO9 polyhedron and one of the four hydrogen bonds link these sheets.
  相似文献   

5.
Summary The atomic arrangements within the structures of NH4Ag2(AsS2)3 [a=9.557(2),b=7.414(2),c=16.29(1) Å; =91.30(5)°; space group P21/n;R(F)=0.042] and (NH4)5Ag16(AsS4)7 [a=64.49(6),b=6.471(2),c=12.806(4) Å; =95.47(5)°; space group Cc;R(F)=0.073] were determined from single crystal X-ray data. In these two compounds the coordination spheres of the Ag atoms are quite different. In NH4Ag2(AsS2)3, the Ag atoms exhibit a [2+2]- and a [3+1]-coordination to S atoms up to 3.3 Å and with Ag atom neighbours at 2.93 Å and 3.05 Å respectively. In (NH4)5Ag16(AsS4)7, the Ag atoms are — with one exception- [4] coordinated (Ag-S<3.3 Å) and the distances to further Ag atom neighbours are greater than 3.1 Å. NH4Ag2(AsS2)3 represents an ordered cyclo-thioarsenate(III) with three-membered As3S6 rings, (NH4)5Ag16(AsS4)7 a neso-thioarsenate(V) with two split Ag atom positions. Both compounds were synthesized under moderate hydrothermal conditions.
Synthesen und Kristallstrukturen von NH4Ag2(AsS2)3 und (NH4)5Ag16(AsS4)7 mit einer Diskussion über (NH4)Sx Polyeder
Zusammenfassung Die Atomanordnungen in den Strukturen von NH4Ag2(AsS2)3 [a=9.557(2),b=7.414(2),c=16.29(1) Å; =91.30(5)°; Raumgruppe P21/n;R(F)=0.042] und (NH4)5Ag16(AsS4)7 [a=64.49(6),b=6.471(2),c=12.806(4) Å; =95.47(5)°; Raumgruppe Cc;R(F)=0.073] wurden anhand von röntgenographischen Einkristalldaten bestimmt. In diesen beiden Verbindungen sind die Koordinationsverhältnisse um die Ag-Atome sehr unterschiedlich. In NH4Ag2(AsS2)3 besitzen die Ag-Atome bis 3.3 Å eine [2+2]- und [3+1]-Koordination durch S-Atome mit weiteren Ag-Atomen bei 2.93 Å und 3.05 Å. In (NH4)5Ag16(AsS4)7 sind die Ag-Atome mit einer Ausnahme [4]-koordiniert (Ag-S < 3.3 Å), und die Abstände zu weiteren Ag-Atomen sind größer als 3.1 Å. NH4Ag2(AsS2)3 stellt ein geordnetes Cyclothioarsenat(III) mit dreigliedrigen As3S6-Ringen dar, (NH4)5Ag16(AsS4)7 ein Nesothioarsenat (V) mit zwei aufgespaltenen Ag-Positionen. Beide Verbindungen wurden unter mäßigen Hydrothermalbedingungen synthetisiert.
  相似文献   

6.
The synthetic compound Pb6Cu(AsO3)2Cl7 crystallizes in space group R witha 0=9.8614(4),c 0=17.089(2)Å,Z=3. The crystal structure, determined by single crystal X-ray work, is a typical layer structure. Complex Pb6(AsO3)2Cl6 layers are combined via monovalent Cu and Cl atoms. A novel element within the structure is a [Cl3Cu(I)-As(III)O3] group with the interatomic distances (Å): Cu-Cl=2.44 (3×), As-O=1.76 (3×), Cu-As=2.34 (1×).
  相似文献   

7.
The compound, (NH4)[VO(O2)2(NH3)], thermally decomposes to ammonium metavanadate, which then decomposes to vanadium pentoxide. Using a heating rate of 5 deg·min–1, the first decomposition step occurs between 74° and 102°C. The transformation degree dependence of the activation energy (-E) is shown to follow a decreasing convex form, indicating that the first decomposition step is a complex reaction with a change in the limiting stage of the reaction. Infrared spectra indicated that the decomposition proceeds via the gradual reduction of the ratio of the (NH4)2O to V2O5 units from the original 11 ratio in ammonium metavanadate, which may be written as (NH4)2O·V2O5, to V2O5.The assistance of Professor A. M. Heyns (University of Pretoria) and Professor K. L. Range (University of Regensburg) is gratefully acknowledged as well as the financial assistance of the University of Pretoria and the FRD.  相似文献   

8.
The compounds M[PO2(OH)2]2·2H2O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P21/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) Å, β=94.81(1)/94.38(1)°, V=375.4/371.9 Å3; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) Å, β=94.79(1)/94.31(2)°, V=381.5/377.5 Å3; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) Å, β=93.85(1)/93.30(2)°, V=413.4/409.1 Å3. Layers of corner-shared MO6 octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short Oh?O bond distance of 2.57-2.61 Å at room temperature (2.56-2.57 Å at 120 K); only for M=Mg it is increased to 2.65 Å. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO4 vibrations are insensitive to the size and the electronic configuration of the M2+ ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic “ABC trio” for acidic salts: 2900-3180 cm−1 (A band), 2000-2450 cm−1 (B band) and 1550-1750 cm−1 (C band). Both the frequency and the intensity of the A band provide an evidence that the PO2(OH)2 groups in M[PO2(OH)2]2·2H2O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O?O bond distances of about 2.60 Å. The observed shift of the O-H stretching vibrations of the water molecule in the order M=Mg>Mn≈Fe≈Co>Ni>Zn≈Cd has been discussed with respect to the influence of both the character and the strength of M↔H2O interactions.  相似文献   

9.
《Journal of Coordination Chemistry》2012,65(16-18):2557-2568
Abstract

Reaction between (E)-2-((pyridin-2-ylimino)methyl)phenol (HL) and copper(II) nitrate provides tetrakis{(E)-2-((pyridin-2-ylimino)methyl)phenolato}(hydroxido)0.5(nitrato)1.5-tetracopper(II) nitrate hydroxide, [(CuL)4(NO3)1.5(OH)0.5](NO3)(OH) (1 (a) J. Miao, Z. Zhao, H. Chen, D. Wang, Y. Nie. Acta Cryst., E65, m904 (2009); (b) A. Castineiras, J.A. Castro, M.L. Duran, J.A. Garcia-Vazquez, A. Macias, J. Romero, A. Sousa. Polyhedron, 8, 2543 (1989); (c) I.S. Vasil'chenko, A.S. Antsyshkina, D.A. Garnovskii, G.G. Sadikov, M.A. Porai-Koshits, S.G. Sigeikin, A.D. Garnovskii. Koord. Khimiya, 20, 824 (1994).[Crossref], [Web of Science ®] [Google Scholar][Google Scholar][Google Scholar]). ESI-mass spectra show the ion peaks for the dinuclear species at m/z 565 for [(CuL)2(HCO2)]+ and 521 for [(CuL)2+H]+ and the mononuclear species at m/z 260 for [(CuL)]+. Vibrational spectra show very strong bands at 1604/1546?cm?1 for ν(C?=?N/C?=?C) and at 1384, 1351?cm?1 for ν(NO3). Cyclic voltammograms demonstrate an irreversible redox processes for the Cu(II)/Cu(I) and Cu(I)/Cu(0) couples in acetonitrile. X-ray molecular structure determination explores the formation of a cationic tetranuclear copper(II)-complex, in which a deprotonated ligand molecule chelates to one copper ion with the phenolate-O and imino-N atoms. In addition, a phenolate-O atom bridges between two neighboring copper ions and a pyridine-N atom coordinates to a third copper ion, so that each ligand bridges among three copper ions in a κ2N,O:κO:κN' coordination sphere. Thus, the four copper ions and four chelating-bridging ligands assemble primarily into a cationic [(CuL)4]4+ complex. The two copper ions are further coordinated by either a nitrate anion (75% occupancy) or a hydroxide anion (25% occupancy) and form the core of a tetranuclear [(CuL)4(NO3)1.5(OH)0.5]2+ cation.  相似文献   

10.
The crystal structure of Cu(OH)Cl [a=5.555 (2) Å,b=6.671 (4) Å,c=6.127 (2) Å, =114.88 (3)°, space group P2I/a,Z=4] was refined for 810 observed reflections with sin /0.80 Å–1 toR=0.035. Crystals were synthesized under hydrothermal conditions. The copper atom is planar four coordinated by three oxygen atoms and one chlorine atom; two further chlorine atoms complete its coordination. The copper polyhedra share edges to build up sheets, which are connected by hydrogen bonds to the chlorine atoms of adjacent sheets.
  相似文献   

11.
Synthesis and Characterization of Hydroxylammonium Fluorohafnates(IV) Two new hydroxylammonium compounds, (NH3OH)2HfF6 and (NH3OH)3HfF7 were isolated from the system NH2OH/HF/HfF4/H2O. The compounds were prepared by dissolving Hf‐foil in aqueous hydrofluoric acid (40 % or 20 %) followed by adding of NH2OH in ethanolic solution. The characterization was carried out by chemical, thermal, and structural analyses. The compounds are isomorphic with the hydroxylammonium fluorozirconates. Thermal analysis of (NH3OH)2HfF6 and (NH3OH)3HfF7 showed that they decompose in three or two steps with HfF4 as final product.  相似文献   

12.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

13.
Summary The microcristalline phase (NH3OH)2TiF6 has been isolated from aqueous solution. It crystallizes in the tetragonal system with cell parameters:a=9.654±0.005 Å,c=11.546±0.010 Å. The hydroxylammonium fluorotitanate was characterized by vibrational spectroscopy and its thermal decomposition studied by DSC and TG analysis.
  相似文献   

14.
A novel non-centrosymmetric borate, BiCd3(AlO)3(BO3)4, has been prepared by solid state reaction methods below 750 °C. Single-crystal XRD analysis showed that it crystallizes in the hexagonal group P63 with a=10.3919(15) Å, c=5.7215(11) Å, Z=2. In its structure, AlO6 octahedra share edges to form 1D chains that are bridged by BO3 groups through sharing O atoms to form the 3D framework. The 3D framework affords two kinds of channels that are occupied by Bi3+/Cd2+ atoms only or by Bi3+/Cd2+ atoms together with BO3 groups. The IR spectrum further confirmed the presence of BO3 groups. Second-harmonic-generation measurements displayed a response of about 0.5×KDP (KH2PO4). UV-vis diffuse reflectance spectrum showed a band gap of about 3.19 eV. Solid-state fluorescence spectrum exhibited the maximum emission peak at around 390.6 nm. Band structure calculations indicated that it is an indirect semiconductor.  相似文献   

15.
Crystals of PbCu3(OH)(NO3)(SeO3)3·1/2H2O [a=7.761(3)Å,b=9.478(4)Å,c=9.514(4)Å, =66.94(2)°, =69.83(2)°, =81.83(2)°, space group P ,Z=2] and Pb2Cu3O2(NO3)2(SeO3)2 [a=5.884(2)Å,b=12.186(3)Å,c=19.371(4)Å, space group Cmc21,Z=4] were synthesized under hydrothermal conditions. Their crystal structures were refined with three-dimensional X-ray data toR w=0.033 resp. 0.055. In PbCu3(OH)(NO3)(SeO3)3·1/2H2O the Cu atoms are [4+1] and [4+2] coordinated and via SeO3 groups a three-dimensional atomic arrangement is built up. In Pb2Cu3O2(NO3)2(SeO3)2 there are sheets, which are connected only via Pb-O bonds ranging from 2.98 Å to 3.16 Å.
  相似文献   

16.
Herein we describe an alternative strategy to achieve the preparation of nanoscale Cu3N. Copper(II) oxide/hydroxide nanopowder precursors were successfully fabricated by solution methods. Ammonolysis of the oxidic precursors can be achieved essentially pseudomorphically to produce either unsupported or supported nanoparticles of the nitride. Hence, Cu3N particles with diverse morphologies were synthesized from oxygen-containing precursors in two-step processes combining solvothermal and solid−gas ammonolysis stages. The single-phase hydroxochloride precursor, Cu2(OH)3Cl was prepared by solution-state synthesis from CuCl2·2H2O and urea, crystallising with the atacamite structure. Alternative precursors, CuO and Cu(OH)2, were obtained after subsequent treatment of Cu2(OH)3Cl with NaOH solution. Cu3N, in the form of micro- and nanorods, was the sole product formed from ammonolysis using either CuO or Cu(OH)2. Conversely, the ammonolysis of dicopper trihydroxide chloride resulted in two-phase mixtures of Cu3N and the monoamine, Cu(NH3)Cl under similar experimental conditions. Importantly, this pathway is applicable to afford composite materials by incorporating substrates or matrices that are resistant to ammoniation at relatively low temperatures (ca. 300 °C). We present preliminary evidence that Cu3N/SiO2 nanocomposites (up to ca. 5 wt.% Cu3N supported on SiO2) could be prepared from CuCl2·2H2O and urea starting materials following similar reaction steps. Evidence suggests that in this case Cu3N nanoparticles are confined within the porous SiO2 matrix.  相似文献   

17.
Summary The crystal structure of synthetic Cu3SeO4(OH)4 was determined by single crystal X-ray methods:a=8.382 (2) Å,b=6.087 (1) Å,c=12.285 (2) Å,V=626.8 Å3,Z=4, space group Pnma,R=0.026,R w =0.021 for 1255 independent reflections (sin / 0.8 Å–1). The crystal structure is isotypic to that of the mineral antlerite, Cu3SO4(OH)4. The copper atoms are Jahn-Teller distorted with Cu[4+2]O6 polyhedra forming triple chains along [010]. These chains are linked via SeO4 tetrahedra and weak hydrogen bonds to a framework structure.
Die Kristallstruktur von synthetischem Cu3SeO4(OH)4
Zusammenfassung Die Kristallstruktur von synthetischem Cu3SeO4(OH)4 wurde mittels Einkristall-Röntgenmethoden ermittelt:a=8.382 (2) Å,b=6.087 (1) Å,c=12.285 (2) Å,V=626.8 Å3,Z=4, Raumgruppe Pnma,R=0.026,R w =0.021 für 1255 unabhängige Reflexe (sin / 0.8 Å–1). Die Kristallstruktur ist isotyp mit der des Minerals Antlerit, Cu3SO4(OH)4. Die Kupferatome sind Jahn-Teller-verzerrt, die Cu[4+2]O6 Polyeder bilden Dreierketten entlang [010]. Diese Ketten sind über SeO4-Tetraeder und schwache Wasserstoffbrücken zu einer Gerüststruktur verbunden.
  相似文献   

18.
The new compound Sr5(As2O7)2(AsO3OH) was synthesized under hydrothermal conditions. It represents a previously unknown structure type and belongs to a group of a few compounds in the system SrO-As2O5-H2O; (As2O7)4− besides (AsO3OH)2− groups have not been described yet. The crystal structure of Sr5(As2O7)2(AsO3OH) was determined by single-crystal X-ray diffraction (space group P21/n, a=7.146(1), b=7.142(1), , β=93.67(3)°, , Z=4). One of the five symmetrically unique Sr atoms is in a trigonal antiprismatic (Inorg. Chem. 35 (1996) 4708)—coordination, whereas the other Sr atoms adopt the commonly observed (“Collect” data collection software, Delft, The Netherlands, 1999; Methods Enzymol. 276 (1997) 307)—coordination. The position of the hydrogen atom was located in a difference Fourier map and subsequently refined with an isotropic displacement parameter. Worth mentioning is the very short hydrogen bond length Oh-H?O(1) of 2.494(4) Å; it belongs to the shortest known examples where the donor and acceptor atoms are crystallographically different. This hydrogen bond was confirmed by IR spectroscopy. In addition, Raman spectra were collected in order to study the arsenate groups.  相似文献   

19.
采用配位沉淀法制备出了Ni(OH)2样品,经XRD测试为β-Ni(OH)2,TEM测试结果表明其为平均粒径50nm左右的不规则的颗粒。将所制备的纳米Ni(OH)2按8wt%的比例在球镍中混合后制成电极,可使正极的比容量提高11%左右。热分析表明,纳米Ni(OH)2的电化学活性高于球镍的电化学活性。激光拉曼光谱的测试结果说明了8wt%混合后制成的纳米电极确实有较好的放电容量,同时也证实了用拉曼光谱可以表征电极材料的充放电  相似文献   

20.
This paper reports about two new hydrogen-containing rare-earth oxoborates RE4B6O14(OH)2 (RE=Dy, Ho) synthesized under high-pressure/high-temperature conditions from the corresponding rare-earth oxides, boron oxide, and water using a Walker-type multianvil equipment at 8 GPa and 880 °C. The single crystal structure determination of Dy4B6O14(OH)2 showed: Pbcn, a=1292.7(2), b=437.1(2), , Z=2, R1=0.0190, and wR2=0.0349 (all data). The isotypic holmium species revealed: Pbcn, a=1292.8(2), b=436.2(2), , Z=2, R1=0.0206, and wR2=0.0406 (all data). The compounds exhibit a new type of structure, which is built up from layers of condensed BO4-tetrahedra. Between the layers, the rare-earth cations are coordinated by 7+2 oxygen atoms. Furthermore, we report about temperature-resolved in situ powder diffraction measurements, DTA/TG, and IR-spectroscopic investigations into RE4B6O14(OH)2 (RE=Dy, Ho).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号