首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic liquids are finding wider and wider use in various fields of technology [1]. Such liquids can be used as heat exchange fluids in equipment which generates a magnetic field under conditions of weightlessness [2] and in a number of other applications. The efficiency of heat exchange equipment is determined to a significant degree by the temperature of the magnetic liquid. In connection with this fact, it is of interest to examine nonisothermal flows at a temperature near the Curie point, where the dependence of volume magnetization M on temperature is expressed most clearly. In this case the character of the liquid flow will be affected not only by the dependence of saturation volume magnetization on temperature, but also by temperature inhomogeneity caused by development of external heat sources and sinks produced by the magnetocaloric effect. We note that although this is a weak effect [3], the temperature redistribution over channel section which it produces may be significant. With a high gradient in the external magnetic field H even a small change in temperature can significantly change the force acting on a magnetic liquid element. The unique features of magnetic liquid flow at a temperature close to the Curie point can be investigated by simultaneously solving the equations of motion and thermal conductivity.Translated from Zhurnal Prikladnoi Mekhaniki i Technicheskoi Fiziki, No. 1, pp. 93–96, January–February, 1984.The author expresses his gratitude to the participants in K. B. Pavlov's scientific seminar for their evaluation of the study.  相似文献   

2.
Considerable interest attaches to the study of a jet of viscous liquid in a field of body forces that depend on an axial coordinate. Such flows are realized when slag cotton is obtained by the action on a molten mineral of the centrifugal force of drums rotating in the vertical plane [1]. The behavior of a film of liquid on a rotating cylinder was considered in [2, 3]. The instability of a molten layer and jet separation are explained on the basis of the Taylor mechanism in [4]. In the present paper, a particular solution is given for accelerating nonisothermal jets of a viscous incompressible liquid. This solution is used to explain the dynamics of jet separation from a uniformly rotating drum. The flow stability is analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 27–36, September–October, 1980.We thank A. A. Zaitsev for discussing the results of the work.  相似文献   

3.
Moskowitz and Rosensweig [1] describe the drag of a magnetic liquid — a colloidal suspension of ferromagnetic single-domain particles in a liquid carrier — by a rotating magnetic field. Various hydrodynamic models have been proposed [2, 3] to describe the macroscopic behavior of magnetic suspensions. In the model constructed in [2] it was assumed that the intensity of magnetization is always directed along the field so that the body torque is zero. Therefore, this model cannot account for the phenomenon under consideration. We make a number of simplifying assumptions to discuss the steady laminar flow of an incompressible viscous magnetizable liquid with internal rotation of particles moving in an infinitely long cylindrical container in a rotating magnetic field. The physical mechanism setting the liquid in motion is discussed. The importance of unsymmetric stresses and the phenomenon of relaxation of magnetization are emphasized. The solution obtained below is also a solution of the problem of the rotation of a polarizable liquid in a rotating electric field according to the model in [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 40–43, July–August, 1970.  相似文献   

4.
Nonisothermal Couette flow has been studied in a number of papers [1–11] for various laws of the temperature dependence of viscosity. In [1] the viscosity of the medium was assumed constant; in [2–5] a hyperbolic law of variation of viscosity with temperature was used; in [6–8] the Reynolds relation was assumed; in [9] the investigation was performed for an arbitrary temperature dependence of viscosity. Flows of media with an exponential temperature dependence of viscosity are characterized by large temperature gradients in the flow. This permits the treatment of the temperature variation in the flow of the fluid as a hydrodynamic thermal explosion [8, 10, 11]. The conditions of the formulation of the problem of the articles mentioned were limited by the possibility of obtaining an analytic solution. In the present article we consider nonisothermal Couette flows of a non-Newtonian fluid under the action of a pressure gradient along the plates. The equations for this case do not have an analytic solution. Methods developed in [12–14] for the qualitative study of differential equations in three-dimensional phase spaces were used in the analysis. The calculations were performed by computer.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 26–30, May–June, 1981.  相似文献   

5.
Using the boundary-layer equations as a basis, the author considers the propagation of plane jets of conducting fluid in a transverse magnetic field (noninductive approximation).The propagation of plane jets of conducting fluid is considered in several studies [1–12]. In the first few studies jet flow in a nonuniform magnetic field is considered; here the field strength distribution along the jet axis was chosen in order to obtain self-similar solutions. The solution to such a problem given a constant conductivity of the medium is given in [1–3] for a free jet and in [4] for a semibounded jet; reference [5] contains a solution to the problem of a free jet allowing for the dependence of conductivity on temperature. References [6–8] attempt an exact solution to the problem of jet propagation in any magnetic field. An approximate solution to problems of this type can be obtained by using the integral method. References [9–10] contain the solution obtained by this method for a free jet propagating in a uniform magnetic field.The last study [10] also gives a comparison of the exact solution obtained in [3] with the solution obtained by the integral method using as an example the propagation of a jet in a nonuniform magnetic field. It is shown that for scale values of the jet velocity and thickness the integral method yields almost-exact values. In this study [10], the propagation of a free jet is considered allowing for conduction anisotropy. The solution to the problem of a free jet within the asymptotic boundary layer is obtained in [1] by applying the expansion method to the small magnetic-interaction parameter. With this method, the problem of a turbulent jet is considered in terms of the Prandtl scheme. The Boussinesq formula for the turbulent-viscosity coefficient is used in [12].This study considers the dynamic and thermal problems involved with a laminar free and semibounded jet within the asymptotic boundary layer, propagating in a magnetic field with any distribution. A system of ordinary differential equations and the integral condition are obtained from the initial partial differential equations. The solution of the derived equations is illustrated by the example of jet propagation in a uniform magnetic field. A similar solution is obtained for a turbulent free jet with the turbulent-exchange coefficient defined by the Prandtl scheme.  相似文献   

6.
Interest in the hydrodynamics of a liquid with particle rotations and microdeformations has recently intensified [1–9] in connection with the technical applications of different artificially synthesized structured media. A model of a liquid with deformable microstructure was first proposed in [4] and was thermodynamically analyzed in [6], in which a model of a liquid was constructed by means of methods from the thermodynamics of irreversible processes. A model of a macro- and microincompressible liquid with particle rotations and deformations has been proposed [7, 8] based on constitutive equations from [6]. Below we will solve the sphere rotation problem in an infinite liquid given different boundary conditions on the rates of particle rotation and microdeformation within the context of the system of equations presented in [7]. The solution of an analogous problem for a micropolar liquid simulating a suspension with solid particles has been obtained [9] and the solution for a viscous liquid was found by Stokes in [10].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnieheskoi Fiziki, No. 1, pp. 79–87, January–February, 1976.  相似文献   

7.
An analysis is made of the general equations for the equilibrium of magnetizable and polarizable media. The problem of the equilibrium of a finite volume of a magnetizable medium is reduced to a system of one differential and two integral equations, which are solved numerically. It is shown that the interface of a magnetizable liquid mass in a homogeneous field extends along the lines of force of the field, with the subsequent formation of a neck of the division.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 141–144, September–October, 1974.The author thanks I. V. Sukharevskii for his interest in the work and his valuable advice, and A. B. Isers for making the computer computations.  相似文献   

8.
An important feature of the high-velocity deformation of solids is the localization of deformation, one of the causes of which may be the nonisothermal instability of plastic flow [1–6]. In connection with the intensive development of high-velocity technology in the treatment of materials, the investigation of the criteria for nonisothermal stability of processes of plastic deformation is of fundamental interest, since in certain cases they determine the optimum technological regimes [5]. The critical values of deformation velocities, above which the effects of thermal instability becomes decisive in the process of deformation of solids, are estimated by semiempirical methods in [1]. The non-boundary-value problem of the criteria for nonisothermal instability is analyzed in [2] for the point of view of flow stability in the so-called coupled formulation. The latter means that the heat-conduction equation is added to the basic equations determining the dynamics of an elastoplastic medium. The problem is solved in [6] in an analogous formulation, but for flow averaged over the spatial coordinate. The solution of the boundary-value problem for one-dimensional flow in this formulation is given in the present paper.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 133–138, May–June, 1986.  相似文献   

9.
If the speed of the outer flow at the edge of the boundary layer does not depend on the time and is specified in the form of a power-law function of the longitudinal coordinate, then a self-similar solution of the boundary-layer equations can be found by integrating a third-order ordinary differential equation (see [1–3]). When the exponent of the power in the outerflow velocity distribution is negative, a self-similar solution satisfying the equations and the usually posed boundary conditions is not uniquely determinable [4], A similar result was obtained in [5] for flows of a conducting fluid in a magnetic field. In the present paper we study the behavior of non-self-similar perturbations of a self-similar solution, enabling us to provide a basis for the choice of a self-similar solution.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 42–46, July–August, 1974.  相似文献   

10.
Many theoretical and experimental papers [1–4] have been devoted to investigating the turbulent boundary layer in the initial section of a channel. For the most part, however, the flow of an incompressible fluid with constant parameters is considered. There are many practical cases in which it is of interest to treat the development of the turbulent boundary layer of gas in the initial section of a pipe when conditions are strongly nonisothermal. A solution of a problem of this type, based on the theory of limit laws, is given in paper [1]. The present article extends this solution to the case of the flow of a high-enthalpy gas when the effect of gas dissociation on the turbulent boundary layer characteristics must be taken into account. We shall consider the flow of a mixture of i gases which is in a frozen state inside the boundary layer, and in an equilibrium state on its boundaries. Formulas are derived for the laws of friction and heat exchange, and a solution is given for the turbulent boundary layer equations in the initial section of the pipe when the wall temperature is constant and the gas flows at a subsonic velocity.Finally the authors are grateful to S. S. Kutateladze for discussing the paper.  相似文献   

11.
The aim of this research is to establish the validity of the predictions of the theory of slow nonisothermal flows, to study the limits of applicability (with respect to the Knudsen number) of the conclusions reached and to determine the effect of the Knudsen layers on these flows on the basis of a numerical investigation of slow nonisothermal weakly rarefied gas flow in a plane infinite channel with weakly nonequilibrium heating of the walls and a finite wall temperature difference. The gas flow is described by a relaxation transport equation. The results obtained show how quickly, as the Knudsen number decreases, the solutions of the transport equation outside the Knudsen layers tend to the solution of the equations of gas dynamics of slow nonisothermal flows (and not to the solution of the Navier-Stokes equations).Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 115–121, January–February, 1988.  相似文献   

12.
Self-similar solutions are obtained in [1, 2] to the Navier-Stokes equations in gaps with completely porous boundaries and with Reynolds number tending to infinity. Approximate asymptotic solutions are also known for the Navier-Stokes equations for plane and annular gaps in the neighborhood of the line of spreading of the flow [3, 4]. A number of authors [5–8] have discovered and studied the effect of increase in the stability of a laminar flow regime in channels of the type considered and a significant increase in the Reynolds number of the transition from the laminar regime to the turbulent in comparison with the flow in a pipe with impermeable walls. In the present study a numerical solution is given to the system of Navier-Stokes equations for plane and annular gaps with a single porous boundary in the neighborhood of the line of spreading of the flow on a section in which the values of the local Reynolds number definitely do not exceed the critical values [5–8]. Generalized dependences are obtained for the coefficients of friction and heat transfer on the impermeable boundary. A comparison is made between the solutions so obtained and the exact solutions to the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 21–24, January–February, 1987.  相似文献   

13.
The Navier-Stokes equations are used in a numerical study of the two-dimensional motions of a compressible gas in a closed rectangular region in a gravity field. The motion of the gas is due to the propagation of a temperature discontinuity along the lower boundary of the region. The mechanism of formation of eddy structures is followed in detail for different velocities of the discontinuity and different ratios of the sides of the region. The method of stabilization is used to obtain different stationary solutions to the problem of convection in a rectangular region heated below. The realization of a particular stationary solution depends on the history of the process. Problems of the convective motion of liquids and gases in closed regions heated below, including questions relating to the nonuniqueness of stationary solutions, are considered in the monograph [1] and the review [2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 87–92, September–October, 1980.We thank V. B. Librovich, L. A. Chudov, and G. M. Makhviladze for guidance and helpful discussions.  相似文献   

14.
15.
The self-similar solutions of the boundary layer for a non-Newtonian fluid in MHD were considered in [1, 2] for a power-law velocity distribution along the outer edge of the layer and constant electrical conductivity through the entire flow. However, the MHD flows of many conducting media, which are solutions or molten metals, cannot be described by the MHD equations for non-Newtonian fluids.The self-similar solutions of the boundary layer for a non-Newtonian fluid without account for interaction with the electromagnetic field were studied in [3].In the following we present the self-similar solutions for the boundary layer of pseudoplastic and dilatant fluids with account for the interaction with an electromagnetic field for the case of a power-law velocity distribution along the outer edge of the layer, when the conductivity of the fluid is constant throughout the flow and the magnetic Reynolds number is small.Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, Vol. 2, No. 6, pp. 77–82, 1967The author wishes to thank S. V. Fal'kovich for his interest in this study.  相似文献   

16.
The plane steady problem of the flow of a viscous wall jet past a smoothed break in the contour of a body is considered. For convenience, the flow in the neighborhood of the junction between two flat plates inclined at an angle to each other is chosen for study. As a result of the small extent of the region investigated the flow field is divided into two layers: the main part of the jet, which undergoes inviscid rotation, and a thin sublayer at the wall, which ensures the satisfaction of the no-slip condition. Particular interest attaches to the flow regime in which the solution in the sublayer satisfies the Prandtl boundary layer equations with a given pressure gradient. A similar problem was studied in [1–4]. The present case is distinguished by the structure of the free interaction region in a small neighborhood of the point of zero surface friction stress. By means of the method of matched asymptotic expansions, applied to the analysis of the Navier-Stokes equations, it is established that the interaction mechanism is that described in [5–7]. As a result, an integrodifferential equation describing the behavior of the surface friction stress function is obtained. A numerical solution of this equation is presented. The range of plate angles on which solutions of the equation obtained exist and, therefore, flows of this general type are realized is determined. The essential nonuniqueness of the possible solutions is established, and in particular attention is drawn to the possible existence of six permissible friction distributions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 38–45, January–February, 1986.The author wishes to thank V. V. Sychev and A. I. Ruban for their useful advice and discussion of the results.  相似文献   

17.
After transformation to new variables the system of equations describing planar potential electrohydrodynamic flows with a small interaction parameter is converted to a single equation. The particular solution of this equation, which is the electrohydrodynamic analog of Hamel's solution in the dynamics of a viscous liquid, is found. Two types of flows, described by simplified equations, can be distinguished when certain constraints are imposed on the manner in which the electrical parameters vary along the coordinate lines and the terms of the equation correspondingly estimated. These flows are the jet and quasione-dimensional flows of the charged component in a curvilinear electrostatic field and a supper-posed two-dimensional potential flow of the carrier medium. Solutions to the approximate equations are obtained for certain particular cases.Kiev. Transklated from Izvestiya Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 140–147, July–August, 1972.  相似文献   

18.
Blowing at bluff body base was considered under different conditions and for small amount of blowing this problem was solved using dividing streamline model [1]. The effect of supersonic blowing on the flow characteristics of the external supersonic stream was studied in [2–4]. The procedure and results of the solution to the problem of subsonic blowing of a homogeneous fluid at the base of a body in supersonic flow are discussed in this paper. Analysis of experimental results (see, e.g., [5]) shows that within a certain range of blowing rate the pressure distribution along the viscous region differs very little from the pressure in the free stream ahead of the base section. In this range the flow in the blown subsonic jet and in the mixing zones can be described approximately by slender channel flow. This approximation is used in the computation of nozzle flows with smooth wall inclination [6, 7]. On the other hand, boundary layer equations are used to compute separated stationary flows with developed recirculation regions [8] in order to describe the flow at the throat of the wake. The presence of blowing has significant effect on the flow structure in the base region. An increasing blowing rate reduces the size of the recirculation region [9] and increases base pressure. This leads to a widening of the flow region at the throat, usually described by boundary-layer approximations. At a certain blowing rate the recirculation region completely disappears which makes it possible to use boundary-layer equations to describe the flow in the entire viscous region in the immediate neighborhood of the base section.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 76–81, January–February, 1984.  相似文献   

19.
Questions of the dynamics of bubbles in a liquid are connected with problems of cavitation [1]. In connection with cavitation phenomena in non-Newtonian media, in particular in polymeric liquids [2, 3], a study is made of the pulsations of a bubble in a polymeric liquid with an exponential rheological law. The equation of the motion of the boundary of the gas cavity is integrated numerically; here, the cases of pseudo-plastic and dilatant liquids are discussed separately. The results obtained can be used in the analysis of acoustical cavitation in aqueous solutions of polymers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 146–148, January–February, 1975.  相似文献   

20.
Distributed blowing of gas into a supersonic stream from flat surfaces using an inviscid flow model was studied in [1–9]. A characteristic feature of flows of this type is the influence of the conditions specified on the trailing edge of the body on the complete upstream flow field [3–5]. This occurs because the pressure gradient that arises on the flat surface is induced by a blowing layer whose thickness in turn depends on the pressure distribution on the surface. The assumption of a thin blowing layer makes it possible to ignore the transverse pressure gradient in the layer and describe the flow of the blown gas by the approximate thin-layer equations [1–5]. In addition, at moderate Mach numbers of the exterior stream the flow in the blowing layer can be assumed to be incompressible [3]. In [7, 8] a solution was found to the problem of strong blowing of gas into a supersonic stream from the surface of a flat plate when the blowing velocity is constant along the length of the plate. In the present paper, a different blowing law is considered, in accordance with which the flow rate of the blown gas depends on the difference between the pressures on the surface over which the flow occurs and in the reservoir from which the gas is supplied. As in [8, 9], the solution is obtained analytically in the form of universal formulas applicable for any pressure specified on the trailing edge of the plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 108–114, September–October, 1980.I thank V. A. Levin for suggesting the problem and assistance in the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号