首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A new approach for the detection of DNA target molecules is described, using capture probes and subsequent signal enhancement by a uniform polymerase chain reaction (PCR). Peptide nucleic acid probes were immobilized in real-time PCR-compatible microtiter plates. After hybridization of biotinylated DNA targets, detection was performed by real-time immuno-PCR, a method formerly used for protein detection. We demonstrate the feasibility of this strategy for the qualitative detection of DNA oligonucleotides with a detection limit (LOD) of 6 attomol. Furthermore, the method was applied to PCR-amplified samples from genetically modified maize DNA (Mon810). A 483-bp DNA fragment was detected in mixture with 99.9% of noncomplementary DNA with a sensitivity down to the level of attomole. Figure    相似文献   

2.
Biological assays at the single molecule level are crucial to fundamental studies of DNA-protein mechanisms. In order to cater for high throughput applications, one area of immense research potential is single-molecule bioassays where miniaturized devices are developed to perform rapid and effective biological reactions and analyses. With the success of various emerging technologies for engineering miniaturized structures down to the nanoscale level, supported by specialized equipment for detection, many investigations in the field of life science that were once thought impossible can now be actively explored. In this review, the significance of downscaling to the single-molecule level is firstly presented in selected examples, with the focus placed on restriction enzyme assays. To determine the effectiveness of single-molecule restriction enzyme reactions, simple and direct analytical methods based on DNA stretching have often been reliably employed. DNA stretching can be realized based on a number of working principles related to the physical forces exerted on the DNA samples. We then discuss two examples of a nanochannel system and a microchamber system where single-molecule restriction enzyme digestion and DNA stretching have been integrated, which possess prospective capabilities of developing into highly sensitive and high-throughput restriction enzyme assays. Finally, we take a brief look at the general trends in technological development in this field by comparing the advantages and disadvantages of performing assays at bulk, microscale and single-molecule levels. Figure Minaturization of Restriction Enzyme Assays and DNA Stretching  相似文献   

3.
We describe a DNA microarray system using a bipolar integrated circuit photodiode array (PDA) chip as a new platform for DNA analysis. The PDA chip comprises an 8 × 6 array of photodiodes each with a diameter of 600 μm. Each photodiode element acts both as a support for an immobilizing probe DNA and as a two-dimensional photodetector. The usefulness of the PDA microarray platform is demonstrated by the detection of high-risk subtypes of human papilloma virus (HPV). The polymerase chain reaction (PCR)-amplified biotinylated HPV target DNA was hybridized with the immobilized probe DNA on the photodiode surface, and the chip was incubated in an anti-biotin antibody-conjugated gold nanoparticle solution. The silver enhancement by the gold nanoparticles bound to the biotin of the HPV target DNA precipitates silver metal particles at the chip surfaces, which block light irradiated from above. The resulting drop in output voltage depends on the amount of target DNA present in the sample solution, which allows the specific detection and the quantitative analysis of the complementary target DNA. The PDA chip showed high relative signal ratios of HPV probe DNA hybridized with complementary target DNA, indicating an excellent capability in discriminating HPV subtypes. The detection limit for the HPV target DNA analysis improved from 1.2 nM to 30 pM by changing the silver development time from 5 to 10 min. Moreover, the enhanced silver development promoted by the gold nanoparticles could be applied to a broader range of target DNA concentration by controlling the silver development time. Figure An optical image of the PDA chip and target DNA detection through silver enhancement Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
In the present work we report the results obtained with a methodology based on direct coupling of a headspace generator to a mass spectrometer for the identification of different types of petroleum crudes in polluted soils. With no prior treatment, the samples are subjected to the headspace generation process and the volatiles generated are introduced directly into the mass spectrometer, thereby obtaining a fingerprint of volatiles in the sample analysed. The mass spectrum corresponding to the mass/charge ratios (m/z) contains the information related to the composition of the headspace and is used as the analytical signal for the characterization of the samples. The signals obtained for the different samples were treated by chemometric techniques to obtain the desired information. The main advantage of the proposed methodology is that no prior chromatographic separation and no sample manipulation are required. The method is rapid, simple and, in view of the results, highly promising for the implementation of a new approach for oil spill identification in soils. Figure PCA score plots illustrate clear discrimination of types of crude oil in polluted soil samples (e.g. results are shown for vertisol)  相似文献   

5.
Spectrofluorometric titration, electrospray ionization time-of-flight mass spectrometric and UV melting methods were employed to study the binding of chelerythrine and sanguinarine to bulged DNA. The results showed that both alkaloids bind specifically to single pyrimidine (C, T) bulge sites. The ability of sanguinarine to bind to both regular and bulged hairpins was found to be stronger than that of chelerythrine, but the binding selectivity of chelerythrine toward single-base bulges was much larger than that of sanguinarine. Figure Association constants for chelerythrine and sanguinarine toward regular and single-base bulged hairpins obtained from fluorometric analysis  相似文献   

6.
Impedance spectroscopy is proposed as the transduction principle for detecting the hybridization of DNA complementary strands. In our experiments, different DNA oligonucleotides were used as model gene substances. The gene probe is first immobilized on a graphite-epoxy composite working electrode based genosensor. Detection principle is based on changes of impedance spectra of a redox marker, the ferro/ferricyanide couple, after hybridization with target DNA. Resistance offered to the electrochemical reaction serves as the working signal, allowing for an unlabelled gene assay.   相似文献   

7.
We report the multiplexed, simultaneous analysis of antigen–antibody interactions that involve human immunoglobulin G (IgG) on a gold substrate by the surface plasmon resonance imaging method. A multichannel, microfluidic chip was fabricated from poly(dimethylsiloxane) (PDMS) to selectively functionalize the surface and deliver the analyte solutions. The sensing interface was constructed using avidin as a linker layer between the surface-bound biotinylated bovine serum albumin and biotinylated anti-human IgG antibodies. Four mouse anti-human IgG antibodies were selected for evaluation and the screening was achieved by simultaneously monitoring protein–protein interactions under identical conditions. Antibody–antigen binding affinities towards human immunoglobulin were quantitatively compared by employing Langmuir adsorption isotherms for the analysis of SPRi responses obtained under equilibrium conditions. We were able to identify two IgG samples with higher affinities towards the target, and the determined binding kinetics falls within the typical range of values reported in the literature. Direct measurement of proteins in serum samples by SPR imaging was achieved by developing methods to minimize nonspecific adsorption onto the avidin-functionalized surface, and a limit of detection (LOD) of 6.7 nM IgG was obtained for the treated serum samples. The combination of SPR imaging and multichannel PDMS chips offers convenience and flexibility for sensitive and label-free measurement of protein–protein interactions in complex conditions and enables high-throughput screening of pharmaceutically significant molecules. Figure Microchannel SPR imaging for protein–protein interactions  相似文献   

8.
The O-linked β-N-acetylglucosamine (O-GlcNAc) modification is an abundant post-translational modification in eukaryotic cells. This dynamic glycosylation plays a fundamental role in the activity of many nuclear and cytoplasmic proteins and is associated with pathologies like type II diabetes, Alzheimer’s disease or some cancers. However the exact link between O-GlcNAc-modified proteins and their function in cells is largely undefined for most cases. Here we report a strategy based on the 1,3-dipolar cycloaddition, called click chemistry, between unnatural N-acetylglucosamine (GlcNAc) analogues (substituted with an azido or alkyne group) and the corresponding biotinylated probe to specifically detect, enrich and identify O-GlcNAc-modified proteins. This bio-orthogonal conjugation confirms that only azido analogue of GlcNAc is metabolized by the cell. Thanks to the biotin probe, affinity purification on streptavidin beads allowed us to identify 32 O-GlcNAc-azido-tagged proteins by LC-MS/MS analysis in an MCF-7 cellular model, 14 of which were previously unreported. This work illustrates the use of the click-chemistry-based strategy combined with a proteomic approach to get further insight into the pattern of O-GlcNAc-modified proteins and the biological significance of this post-translational modification. Figure Detection of biotinylated O-GlcNAz proteins in MCF-7 cells Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Caroline Gurcel and Anne-Sophie Vercoutter-Edouart contributed equally to this work.  相似文献   

9.
In this work, we present theoretical and experimental studies of nanofluidic channels as a potential biosensor for measuring rapid protein complex formation. Using the specific properties offered by nanofluidics, such as the decrease of effective diffusion of biomolecules in confined spaces, we are able to monitor the binding affinity of two proteins. We propose a theoretical model describing the concentration profile of proteins in a nanoslit and show that a complex composed by two bound biomolecules induces a wider diffusion profile than a single protein when driven through a nanochannel. To validate this model experimentally, we measured the increase of the fluorescent diffusion profile when specific biotinylated dextran was added to fluorescent streptavidin. We report here a direct and relatively simple technique to measure the affinity between proteins. Figure We present theoretical and experimental studies of nanofluidic channels as potential biosensors for rapidly measuring protein complex formation. Our system is based on steady-state diffusion effects which are observed inside a nanoslit.  相似文献   

10.
Applications of microelectromechanical systems (MEMS) technology are widespread in both industrial and research fields providing miniaturized smart tools. In this review, we focus on MEMS applications aiming at manipulations and characterization of biomaterials at the single molecule level. Four topics are discussed in detail to show the advantages and impact of MEMS tools for biomolecular manipulations. They include the microthermodevice for rapid temperature alternation in real-time microscopic observation, a microchannel with microelectrodes for isolating and immobilizing a DNA molecule, and microtweezers to manipulate a bundle of DNA molecules directly for analyzing its conductivity. The feasibilities of each device have been shown by conducting specific biological experiments. Therefore, the development of MEMS devices for single molecule analysis holds promise to overcome the disadvantages of the conventional technique for biological experiments and acts as a powerful strategy in molecular biology. Figure Towards single bio molecular handling and characterization by MEMS  相似文献   

11.
Thin nanoporous alumina obtained by anodization of aluminum films offers promising advantages for application in fluorescence-based biological sensors including convenient preparation, increased density of binding sites, and improved collection efficiency of fluorescence. These advantages are illustrated in the detection of streptavidin using biotin covalently bound to the surface of alumina nanopores. Fluorescence intensity enhancement as high as 7 times is observed in nanopores in comparison to flat glass surface.   相似文献   

12.
Unique base sequences derived from RNA of both infectious hematopoietic necrosis virus (IHNV) and infectious salmon anemia virus (ISAV) were detected and identified using a combination of surface-associated molecular padlock DNA probes (MPPs) and rolling circle amplification (RCA) in microcapillary tubes. DNA oligonucleotides with base sequences identical to RNA obtained from IHNV or ISAV were recognized by MPPs. Circularized MPPs were then captured on the inner surfaces of glass microcapillary tubes by immobilized DNA oligonucleotide primers. Extension of the immobilized primers by isothermal RCA produced DNA concatamers, which were labeled with fluorescent SYBR Green II nucleic acid stain, and measured by microfluorimetry. Molecular padlock probes, combined with this method of surface-associated isothermal RCA, exhibited high selectivity without the need for thermal cycling. This method is applicable to the design of low-power field sensors capable of multiplex detection of viral, bacterial, and protozoan pathogens within localized regions of microcapillary tubes.   相似文献   

13.
The use of electrochemical impedance spectroscopy for biosensing   总被引:1,自引:0,他引:1  
This review introduces the basic concepts and terms associated with impedance and techniques of measuring impedance. The focus of this review is on the application of this transduction method for sensing purposes. Examples of its use in combination with enzymes, antibodies, DNA and with cells will be described. Important fields of application include immune and nucleic acid analysis. Special attention is devoted to the various electrode design and amplification schemes developed for sensitivity enhancement. Electrolyte insulator semiconductor (EIS) structures will be treated separately. Figure An alternating current which is forced to pass an interface is sensitive to surface changes and will detect impedance changes due to biomolecule immobilisation or formation of a recognition complex. This can be used for the construction of biosensor electrodes  相似文献   

14.
Melphalan is a bifunctional alkylating agent that covalently binds to the nucleophilic sites present in DNA. In this study we investigated oligonucleotides prepared enzymatically from DNA modified with melphalan. Calf thymus DNA was incubated in-vitro with melphalan and the resulting modifications were enzymatically cleaved by means of benzonase and nuclease S1. Efficient sample preconcentration was achieved by solid-phase extraction, in which phenyl phase cartridges resulted in better recovery of the modified species than C18. The applied enzymatic digestion time resulted in production of trinucleotide adducts which were efficiently separated and detected by use of reversed-phase HPLC coupled to an ion-trap mass spectrometer with electrospray ionization. It was assumed that melphalan could act as both a monofunctional and bifunctional alkylating agent. Mono-alkylated adducts were much more abundant, however, and the alkylation site was located on the nucleobases. On the other hand, we unequivocally identified cross-link formation in DNA, even though at low abundance and only a few adduct types were detected. Figure Different Alkylation reactions of Melphalan with DNA  相似文献   

15.
The end-group functionalisation of a series of poly(propylene glycol)s has been characterised by means of electrospray ionisation–tandem mass spectrometry (ESI-MS/MS). A series of peaks with mass-to-charge ratios that are close to that of the precursor ion were used to generate information on the end-group functionalities of the poly(propylene glycol)s. Fragment ions resulting from losses of both of the end groups were noted from some of the samples. An example is presented of how software can be used to significantly reduce the length of time involved in data interpretation (which is typically the most time-consuming part of the analysis). Figure Screenshot from Polymerator software of annotated ESI-MS/MS spectrum from the lithiated heptamer of poly(propylene glycol) di-acrylate  相似文献   

16.
The use of polymers in microchip fabrication affords new opportunities for the development of powerful, miniaturized separation techniques. One method in particular, the use of phase-changing sacrificial layers, allows for simplified designs and many additional features to the now standard fabrication of microchips. With the possibility of adding a third dimension to the design of separation devices, various means of enhancing analysis now become possible. The application of phase-changing sacrificial layers in microchip analysis systems is discussed, both in terms of current uses and future possibilities. Figure Phase-changing sacrificial materials enable multilayer microfluidic device layouts  相似文献   

17.
A piece of dry N-isopropylacrylamide polymer was soaked in phosphate buffer to obtain a hydrogel which was then employed in the examination of interactions between an anticancer drug C-1311 (5-diethylaminoethyl-amino-8-hydroxyimidazoacridinone) and dsDNA. dsDNA was introduced into the polymer at the polymerization stage. The drug was added to the buffer. Using the volume phase transition of the gel at 40 °C, the unbound drug could be determined in the solution released during the transition, which made the calculations more reliable. The interaction parameters were calculated using the McGhee and von Hippel model. It appeared that in the gel medium, the interaction between the drug and dsDNA is spatially limited, since the number of binding units of the polymer chain occupied by one drug molecule was found to be one, while it was two in the regular buffer solution. Figure   The two authors Agata Kowalczyk and Anna M. Nowicka contributed equally to this work.  相似文献   

18.
A method based on use of functionalized gold nanoparticles on polyethylenimine film has been developed for colorimetric detection of immunoglobulin G (IgG). The immunogold nanoparticles were immobilized on quartz slides by recognition between antibody and antigen, with the antigen chemically adsorbed on the polyethylenimine film. By measurement of the UV–visible spectra of the immobilized immunogold, detection of h-IgG was achieved. The detection limit for h-IgG by use of this method can be as low as 0.01 μg mL−1. This method is quite promising for numerous applications in immunoassay. Figure  相似文献   

19.
Asymmetrical flow field-flow fractionation (AsFlFFF) was used to determine the size distribution of drug-loaded core/shell nanoparticles which have a lipid core of lecithin and a polymeric shell of a Pluronic. AsFlFFF provided separation of the drug-loaded core/shell nanoparticles from smaller coreless polymeric micelles, thus allowing accurate size analysis of the drug-loaded nanoparticles without interference by the coreless micelles. It was found from AsFlFFF that the drug-loaded nanoparticles have broad size distributions ranging from 100 to 600 nm in diameter. It was also found that, after the nanoparticles had been stored for 70 days, they disappeared as a result of self-degradation. Being a separation technique, AsFlFFF seems to be more useful than transmission electron microscopy or dynamic light scattering for size analysis of core/shell nanoparticles, which have broad and bimodal size distributions. Figure Separation by AsFlFFF  相似文献   

20.
The insulin-like-growth factor (IGF-I) peptide is considered to be the main indirect marker for growth hormone administration (GH) in a horse. Further to a previous investigation on measurement of IGF-I in plasma samples by mass spectrometry, this study focuses on quantitative and qualitative analysis of intact IGF-I in horse plasma. First, protein-transposing software has been developed for IGF-I to facilitate its quantification by HPLC–electrospray–ion-trap mass spectrometry. Second, product-ion scan experiments on IGF-I have been conducted on standard samples, non-fortified equine plasma samples, fortified plasma samples, and equine GH post-administration samples. This “top-down” approach method enables characterisation of fragment ions corresponding to the carboxy terminal end, which can be useful for the confirmation of the presence of IGF-I in plasma samples. Figure Structure of IGF-I and amino acid sequences of IGF-I and R3 IGF-I. Deconvolution mass spectra of the IGF-I and R3 IGF-I mixture  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号