首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Structurally similar but charge-differentiated platinum complexes have been prepared using the bidentate phosphine ligands [Ph(2)B(CH(2)PPh(2))(2)], ([Ph(2)BP(2)], [1]), Ph(2)Si(CH(2)PPh(2))(2), (Ph(2)SiP(2), 2), and H(2)C(CH(2)PPh(2))(2), (dppp, 3). The relative electronic impact of each ligand with respect to a coordinated metal center's electron-richness has been examined using comparative molybdenum and platinum model carbonyl and alkyl complexes. Complexes supported by anionic [1] are shown to be more electron-rich than those supported by 2 and 3. A study of the temperature and THF dependence of the rate of THF self-exchange between neutral, formally zwitterionic [Ph(2)BP(2)]Pt(Me)(THF) (13) and its cationic relative [(Ph(2)SiP(2))Pt(Me)(THF)][B(C(6)F(5))(4)] (14) demonstrates that different exchange mechanisms are operative for the two systems. Whereas cationic 14 displays THF-dependent, associative THF exchange in benzene, the mechanism of THF exchange for neutral 13 appears to be a THF independent, ligand-assisted process involving an anchimeric, eta(3)-binding mode of the [Ph(2)BP(2)] ligand. The methyl solvento species 13, 14, and [(dppp)Pt(Me)(THF)][B(C(6)F(5))(4)] (15), each undergo a C-H bond activation reaction with benzene that generates their corresponding phenyl solvento complexes [Ph(2)BP(2)]Pt(Ph)(THF) (16), [(Ph(2)SiP(2))Pt(Ph)(THF)][B(C(6)F(5))(4)] (17), and [(dppp)Pt(Ph)(THF)][B(C(6)F(5))(4)] (18). Examination of the kinetics of each C-H bond activation process shows that neutral 13 reacts faster than both of the cations 14 and 15. The magnitude of the primary kinetic isotope effect measured for the neutral versus the cationic systems also differs markedly (k(C(6)H(6))/k(C(6)D(6)): 13 = 1.26; 14 = 6.52; 15 approximately 6). THF inhibits the rate of the thermolysis reaction in all three cases. Extended thermolysis of 17 and 18 results in an aryl coupling process that produces the dicationic, biphenyl-bridged platinum dimers [[(Ph(2)SiP(2))Pt](2)(mu-eta(3):eta(3)-biphenyl)][B(C(6)F(5))(4)](2) (19) and [[(dppp)Pt](2)(mu-eta(3):eta(3)-biphenyl)][B(C(6)F(5))(4)](2) (20). Extended thermolysis of neutral [Ph(2)BP(2)]Pt(Ph)(THF) (16) results primarily in a disproportionation into the complex molecular salt [[Ph(2)BP(2)]PtPh(2)](-)[[Ph(2)BP(2)]Pt(THF)(2)](+). The bulky phosphine adducts [Ph(2)BP(2)]Pt(Me)[P(C(6)F(5))(3)] (25) and [(Ph(2)SiP(2))Pt(Me)[P(C(6)F(5))(3)]][B(C(6)F(5))(4)] (29) also undergo thermolysis in benzene to produce their respective phenyl complexes, but at a much slower rate than for 13-15. Inspection of the methane byproducts from thermolysis of 13, 14, 15, 25, and 29 in benzene-d(6) shows only CH(4) and CH(3)D. Whereas CH(3)D is the dominant byproduct for 14, 15, 25, and 29, CH(4) is the dominant byproduct for 13. Solution NMR data obtained for 13, its (13)C-labeled derivative [Ph(2)BP(2)]Pt((13)CH(3))(THF) (13-(13)()CH(3)()), and its deuterium-labeled derivative [Ph(2)B(CH(2)P(C(6)D(5))(2))(2)]Pt(Me)(THF) (13-d(20)()), establish that reversible [Ph(2)BP(2)]-metalation processes are operative in benzene solution. Comparison of the rate of first-order decay of 13 versus the decay of d(20)-labeled 13-d(20)() in benzene-d(6) affords k(13)()/k(13-d20)() approximately 3. The NMR data obtained for 13, 13-(13)()CH(3)(), and 13-d(20)() suggest that ligand metalation processes involve both the diphenylborate and the arylphosphine positions of the [Ph(2)BP(2)] auxiliary. The former type leads to a moderately stable and spectroscopically detectable platinum(IV) intermediate. All of these data provide a mechanistic outline of the benzene solution chemistries for the zwitterionic and the cationic systems that highlights their key similarities and differences.  相似文献   

2.
Cyclometallated palladium(II) azido complexes containing C,N,N- or C,N-donor ligands, [Pd(N(3))L](HL = 6-phenyl-2,2'-bipyridine or 2-phenylpyridyl derivatives), showed different reactivities toward organic isocyanides and isothiocyanates. In particular, aryl isocyanides (CN-Ar) underwent insertion into the orthometallated Pd-C bond on the phenyl moiety of the supporting ligand (L) in [Pd(N(3))L] or [Pd(N(3))(PR(3))L] to selectively give carbodiimido [[Pd(N=C=N-Ar)L]], imidoyl [[Pd(N(3))(-C=N-Ar)(PR(3))L]], or imidoyl carbodiimido complexes [[Pd(N=C=N-Ar)(-C=N-Ar)L] or [Pd(N=C=N-Ar)(-C=N-Ar)(PR(3))L]], depending on reaction conditions. Interestingly, reactions of [Pd(N(3))(PR(3))L] with organic isothiocyanates gave unusual dinuclear complexes [(micro-SCN(4)-R)PdL](2), exhibiting the concurrent S- and N-coordinating thio-tetrazole bridge.  相似文献   

3.
[PPh4]2[M(C2N2S2)2](M = Pt, Pd) and [Pt(C2N2S2)(PR3)2](PR3= PMe2Ph, PPh3) and [Pt(C2N2S2)(PP)](PP = dppe, dppm, dppf) were all obtained by the reaction of the appropriate metal halide containing complex with potassium cyanodithioimidocarbonate. The dimeric cyanodithioimidocarbonate complexes [[Pt(C2N2S2)(PR3)]2](PR3 = PMe2Ph), [M[(C2N2S2)(eta5-C5Me5)]2](M = Rh, Ir)and [[Ru(C2N2S2)(eta6-p-MeC6H4iPr)]2] have been synthesised from the appropriate transition metal dimer starting material. The cyanodithioimidocarbonate ligand is S,S and bidentate in the monomeric complexes with the terminal CN group being approximately coplanar with the CS2 group and trigonal at nitrogen thus reducing the planar symmetry of the ligand. In the dimeric compound one of the sulfur atoms bridges two metal atoms with the core exhibiting a cubane-like geometry.  相似文献   

4.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

5.
The complex [[Ir(mu-Pz)(CNBu(t))(2)](2)] (1) undergoes double protonation reactions with HCl and with HO(2)CCF(3) to give the neutral dihydride complexes [[Ir(mu-Pz)(H)(X)(CNBu(t))(2)](2)] (X = Cl, eta(1)-O(2)CCF(3)), in which the hydride ligands were located trans to the X groups and in the boat of the complexes, both in the solid state and in solution. The complex [[Ir(mu-Pz)(H)(Cl)(CNBu(t))(2)](2)] evolves in solution to the cationic complex [[Ir(mu-Pz)(H)(CNBu(t))(2)](2)(mu-Cl)]Cl. Removal of the anionic chloride by reaction with methyltriflate allows the isolation of the triflate salt [[Ir(mu-Pz)(H)(CNBu(t))(2)](2)(mu-Cl)]OTf. This complex undergoes a metathesis reaction of hydride by chloride in CDCl(3) under exposure to the direct sunlight to give the complex [[Ir(mu-Pz)(Cl)(CNBu(t))(2)](2)(mu-Cl)]OTf. Protonation of both metal centers in [[Ir(mu-Pz)(CO)(2)](2)] with HCl occurs at low temperature, but eventually the mononuclear compound [IrCl(HPz)(CO)(2)] is isolated. The related complex [[Ir(mu-Pz)(CO)(P[OPh](3))](2)] reacts with HCl and with HO(2)CCF(3) to give the neutral Ir(III)/Ir(III) complexes [[Ir(mu-Pz)(H)(X)(CO)(P[OPh](3))](2)], respectively. Both reactions were found to take place stepwise, allowing the isolation of the intermediate monohydrides. They are of different natures, i.e., the metal-metal-bonded Ir(II)/Ir(II) compound [(P[OPh](3))(CO)(Cl)Ir(mu-Pz)(2)Ir(H)(CO)(P[OPh](3))] and the mixed-valence Ir(I)/Ir(III) complex [(P[OPh](3))(CO)Ir(mu-Pz)(2)Ir(H)(eta(1)-O(2)CCF(3))(CO)(P[OPh](3))].  相似文献   

6.
[Na(2)(thf)(4)(P(4)Mes(4))] (1) (Mes = 2,4,6-Me(3)C(6)H(2)) reacts with one equivalent of [NiCl(2)(PEt(3))(2)], [NiCl(2)(PMe(2)Ph)(2)], [PdCl(2)(PBu(n)(3))(2)] or [PdCl(2)(PMe(2)Ph)(2)] to give the corresponding nickel(0) and palladium(0) dimesityldiphosphene complexes [Ni(eta(2)-P(2)Mes(2))(PEt(3))(2)] (2), [Ni(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (3), [Pd(eta(2)-P(2)Mes(2))(PBu(n)(3))(2)] (4) and [Pd(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (5), respectively, via a redox reaction. The molecular structures of the diphosphene complexes 2-5 are described.  相似文献   

7.
Treatment of the bridging bidentate 1,Z-bis(aminopropyl)-1,Z-dicarba-closo-dodecaborane(12)(1,Z-bis(aminopropyl)-1,Z-carborane) ligands of the type 1,Z-[H(2)N(CH(2))(3)](2)-1,Z-C(2)B(10)H(10)(L(1), Z= 7, 5) or (L(2), Z= 12, 6) with two equivalents of trans-[PtClI(2)(NH(3))](-), followed by halogen ligand metathesis with AgOTf and HCl((aq)) afforded the novel diplatinum(II)-amine species cis-[[PtCl(2)(NH(3))](2)L(n)](7(n= 1) or 8(n= 2), respectively). Similarly, the reaction of L(1) or L(2) with the labile trans-[PtCl(dmf)(NH(3))(2)](+) afforded trans-[[PtCl(NH(3))(2)](2)L(n)](OTf)(2)(9(n= 1) or 10(n= 2), respectively) in good yield and purity. However, isolation of the analogous 1,2-carborane complexes was not possible owing to decomposition reactions that led to extensive degradation of the carborane cage and reduction of the metal centre. The mixed dinuclear complex [cis-[PtCl(2)(NH(3))]-L(1)-trans-[PtCl(NH(3))(2)]]OTf (19) was prepared by treatment of the Boc-protected amine ligand 1-[(Boc)(2)N(CH(2))(3)]-7-[H(2)N(CH(2))(3)]-1,7-C(2)B(10)H(10)(L(3), 15) with trans-[PtCl(dmf)(NH(3))(2)](+) to yield trans-[PtCl(NH(3))(2)L(3)]OTf (16), followed by acid deprotection of the pendant amine group, complexation with trans-[PtClI(2)(NH(3))](-), and halogen ligand metathesis using AgOTf and HCl((aq)). A novel trinuclear species containing 5 was prepared by the addition of two equivalents of 15 to the labile precursor cis-[Pt(dmf)(2)(NH(3))(2)](2+) followed by acid deprotection of the pendant amine groups. Further complexation with two equivalents of trans-[PtClI(2)(NH(3))](-) followed by halogen ligand metathesis using AgOTf and HCl((aq)) afforded the triplatinum(II)-amine species [cis-[Pt(NH(3))(2)(L(1))(2)]-cis-[PtCl(2)(NH(3))](2)](OTf)(2)(23). Complexes 7-10, 19 and 23 represent the first examples of multinuclear platinum(ii)-amine derivatives containing carborane cages. Preliminary in vitro cytotoxicity studies for selected complexes are also reported.  相似文献   

8.
Treatment of titanyl sulfate in dilute sulfuric acid with 1 equiv of NaL(OEt) (L(OEt)(-) = [(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)](3)](-)) in the presence of Na(3)PO(4) and Na(4)P(2)O(7) led to isolation of [(L(OEt)Ti)(3)(mu-O)(3)(mu(3-)PO(4))] (1) and [(L(OEt)Ti)(2)(mu-O)(mu-P(2)O(7))] (2), respectively. The structure of 1 consists of a Ti(3)O(3) core capped by a mu(3)-phosphato group. In 2, the [P(2)O(7)](4-) ligands binds to the two Ti's in a mu:eta(2),eta(2) fashion. Treatment of titanyl sulfate in dilute sulfuric acid with NaL(OEt) and 1.5 equiv of Na(2)Cr(2)O(7) gave [(L(OEt)Ti)(2)(mu-CrO(4))(3)] (3) that contains two L(OEt)Ti(3+) fragments bridged by three mu-CrO(4)(2-)-O,O' ligands. Complex 3 can act as a 6-electron oxidant and oxidize benzyl alcohol to give ca. 3 equiv of benzaldehyde. Treatment of [L(OEt)Ti(OTf)(3)] (OTf(-) = triflate) with [n-Bu(4)N][ReO(4)] afforded [[L(OEt)Ti(ReO(4))(2)](2)(mu-O)] (4). Treatment of [L(OEt)MF(3)] (M = Ti and Zr) with 3 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(3)] (5) and [L(OEt)Zr(ReO(4))(3)(H(2)O)] (6), respectively. Treatment of [L(OEt)MF(3)] with 2 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(2)F] (7) and [[L(OEt)Zr(ReO(4))(2)](2)(mu-F)(2)] (8), respectively, which reacted with Me(3)SiOTf to give [L(OEt)M(ReO(4))(2)(OTf)] (M = Ti (9), Zr (10)). Hydrolysis of [L(OEt)Zr(OTf)(3)] (11) with Na(2)WO(4).xH(2)O and wet CH(2)Cl(2) afforded the hydroxo-bridged complexes [[L(OEt)Zr(H(2)O)](3)(mu-OH)(3)(mu(3)-O)][OTf](4) (12) and [[L(OEt)Zr(H(2)O)(2)](2)(mu-OH)(2)][OTf](4) (13), respectively. The solid-state structures of 1-3, 6, and 11-13 have been established by X-ray crystallography. The L(OEt)Ti(IV) complexes can catalyze oxidation of methyl p-tolyl sulfide with tert-butyl hydroperoxide. The bimetallic Ti/ Re complexes 5 and 9 were found to be more active catalysts for the sulfide oxidation than other Ti(IV) complexes presumably because Re alkylperoxo species are involved as the reactive intermediates.  相似文献   

9.
Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh]]. Similarly, the reaction of [Pd(bipy)(C(6)F(5))(OH)] with PhNCO in methanol gives the N-phenyl-O-methylcarbamate complex [Pd(bipy)(C(6)F(5))[NPhC(O)OR]]. The reactions of [(N[bond]N)Pd(C(6)F(5))(OH)] with PhNCS in the presence of Et(2)NH yield the corresponding thioureidometal complexes [Pd(N[bond]N)(C(6)F(5))[NPhCSNR(2)]]. The crystal structures of [Pd(tmeda)(C(6)F(5))(CO(2)Me)], [Pd(2)(Me(2)bipy)(2)(C(6)F(5))(2)(mu-eta(2)-CO(3))].2CH(2)Cl(2), and [Pd(tmeda)(C(6)F(5))[SC(OMe)NPh]] have been determined.  相似文献   

10.
The iron complexes CpFe(P(Ph)(2)N(Bn)(2))Cl (1-Cl), CpFe(P(Ph)(2)N(Ph)(2))Cl (2-Cl), and CpFe(P(Ph)(2)C(5))Cl (3-Cl)(where P(Ph)(2)N(Bn)(2) is 1,5-dibenzyl-1,5-diaza-3,7-diphenyl-3,7-diphosphacyclooctane, P(Ph)(2)N(Ph)(2) is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane, and P(Ph)(2)C(5) is 1,4-diphenyl-1,4-diphosphacycloheptane) have been synthesized and characterized by NMR spectroscopy, electrochemical studies, and X-ray diffraction. These chloride derivatives are readily converted to the corresponding hydride complexes [CpFe(P(Ph)(2)N(Bn)(2))H (1-H), CpFe(P(Ph)(2)N(Ph)(2))H (2-H), CpFe(P(Ph)(2)C(5))H (3-H)] and H(2) complexes [CpFe(P(Ph)(2)N(Bn)(2))(H(2))]BAr(F)(4), [1-H(2)]BAr(F)(4), (where BAr(F)(4) is B[(3,5-(CF(3))(2)C(6)H(3))(4)](-)), [CpFe(P(Ph)(2)N(Ph)(2))(H(2))]BAr(F)(4), [2-H(2)]BAr(F)(4), and [CpFe(P(Ph)(2)C(5))(H(2))]BAr(F)(4), [3-H(2)]BAr(F)(4), as well as [CpFe(P(Ph)(2)N(Bn)(2))(CO)]BAr(F)(4), [1-CO]Cl. Structural studies are reported for [1-H(2)]BAr(F)(4), 1-H, 2-H, and [1-CO]Cl. The conformations adopted by the chelate rings of the P(Ph)(2)N(Bn)(2) ligand in the different complexes are determined by attractive or repulsive interactions between the sixth ligand of these pseudo-octahedral complexes and the pendant N atom of the ring adjacent to the sixth ligand. An example of an attractive interaction is the observation that the distance between the N atom of the pendant amine and the C atom of the coordinated CO ligand for [1-CO]BAr(F)(4) is 2.848 ?, considerably shorter than the sum of the van der Waals radii of N and C atoms. Studies of H/D exchange by the complexes [1-H(2)](+), [2-H(2)](+), and [3-H(2)](+) carried out using H(2) and D(2) indicate that the relatively rapid H/D exchange observed for [1-H(2)](+) and [2-H(2)](+) compared to [3-H(2)](+) is consistent with intramolecular heterolytic cleavage of H(2) mediated by the pendant amine. Computational studies indicate a low barrier for heterolytic cleavage of H(2). These mononuclear Fe(II) dihydrogen complexes containing pendant amines in the ligands mimic crucial features of the distal Fe site of the active site of the [FeFe]-hydrogenase required for H-H bond formation and cleavage.  相似文献   

11.
A new high-yield synthesis of [(PhCH(2))(2)Mg(thf)(2)] and [[(PhCH(2))CH(3)Mg(thf)](2)] via benzylpotassium has allowed a simple entry into benzylmagnesium coordination chemistry. The syntheses and X-ray crystal structures of both [(eta(2)-Me(2)NCH(2)CH(2)NMe(2))Mg(CH(2)Ph)(2)] and [eta(2)-HC[C(CH(3))NAr'](2)Mg(CH(2)Ph)(thf)] (Ar'=2,6-diisopropylphenyl) are reported. The latter beta-diketiminate complex reacts with dioxygen to provide a 1:2 mixture of dimeric benzylperoxo and benzyloxo complexes. The benzylperoxo complex [[eta(2)-HC[C(CH(3))NAr'](2)Mg(mu-eta(2):eta(1)-OOCH(2)Ph)](2)] is the first example of a structurally characterised Group 2 metal-alkylperoxo complex and contains the benzylperoxo ligands in an unusual mu-eta(2):eta(1)-coordination mode, linking the two five-coordinate magnesium centres. The O[bond]O separation in the benzylperoxo ligands is 1.44(2) A. Reaction of the benzylperoxo/benzyloxo complex mixture with further [eta(2)-HC[C(CH(3))NAr'](2)Mg(CH(2)Ph)(thf)] results in complete conversion of the benzylperoxo species into the benzyloxo complex. This reaction, therefore, establishes the cleavage of dioxygen by this system as a two-step process that involves initial oxygen insertion into the Mg[bond]CH(2)Ph bond followed by O[bond]O/Mg[bond]C sigma-bond metathesis of the resulting benzylperoxo ligand with a second Mg[bond]CH(2)Ph bond. The formation of a 1:2 mixture of the benzylperoxo and benzyloxo species indicates that the rate of the insertion is faster than that of the metathesis, and this is shown to be consistent with a radical mechanism for the insertion process.  相似文献   

12.
The reaction of [Pd(3)(OAc)(6)] with (E)-acetophenone oxime and pyridine in CHCl(3) under reflux affords the metallacycle [Pd(OAc)[C,N-(C(6)H(4)C(CH(3))=NOH)-2](py)] (1) as a yellow air-stable complex. The same reaction carried out at room temperature in the absence of pyridine affords the trinuclear oximato complex [Pd(mu-(E)-ON=C(CH(3))Ph)(mu-OAc)](3) (2), which can be converted into 1 upon heating in the presence of pyridine. As indicated by (1)H and (31)P NMR spectroscopy, complex 1 reacts with methylparathion in acetone-d(6)-D(2)O solutions to afford [Pd(SP(=O)(OCH(3))(2))[C,N-(C(6)H(4)C(CH(3))=NOH)-2](py)] (3) and [Pd(mu-SP(=O)(OCH(3))(2))[C,N-(C(6)H(4)C(CH(3))=NOH)-2]](2) (4) as well as free p-nitrophenol. Compounds 1-4 have been characterized by single-crystal X-ray analysis, NMR and EA. Compounds 1 and 3 are mononuclear complexes with the acetate and dimethylthiophosphate ligand, respectively, trans from the phenyl group. Compound 2 is a trinuclear complex whose structure can be derived from that of [Pd(3)(OAc)(6)] by replacing three of the acetate ligands on one side of Pd(3) plane by three N,O-coordinated oximate ligands. Complex 4 is a dinuclear complex in which the two square-planar palladium moieties are linked by the sulfur atoms of the bridging dimethylthiophosphate ligands.  相似文献   

13.
The reactions between cis-[M(C(6)F(5))(2)(PPh(2)CtriplebondCR)(2)] (M=Pt, Pd; R=Ph, tBu, Tol 2, 3) or cis-[Pt(C(6)F(5))(2)(PPh(2)CtriplebondCR)(PPh(2)CtriplebondCtBu)] (R=Ph 4, Tol 5) and cis-[Pt(C(6)F(5))(2)(thf)(2)] 1 have been investigated. Whereas [M](PPh(2)CtriplebondCtBu)(2) ([M]=cis-M(C(6)F(5))(2)) is inert towards 1, the analogous reactions starting from [M](PPh(2)CtriplebondCR)(2) or [Pt](PPh(2)CtriplebondCR)(PPh(2)CtriplebondCtBu) (R=Ph, Tol) afford unusual binuclear species [Pt(C(6)F(5))(S)mu-[C(R')dbondC(PPh(2))C(PPh(2))doublebondC(R)(C(6)F(5))]M(C(6)F(5))(2)] (R=R'=Ph, Tol, M=Pt 6 a,c, M=Pd 7 a,c; M=Pt, R'=tBu, R=Ph 8, Tol 9) containing a bis(diphenylphosphanyl)butadienyl bridging ligand formed by an unprecedented sequential insertion reaction of two P-coordinated PPh(2)CtriplebondCR ligands into a PtbondC(6)F(5) bond. Although in solution the presence of coordinated solvent S (S=(thf)(x)(H(2)O)(y)) in 6, 7 is suggested by NMR spectroscopy, X-ray diffraction analyses of different crystals of the mixed complex [Pt(C(6)F(5))mu-[C(tBu)doublebondC(PPh(2))C(PPh(2))doublebondC(Tol)(C(6)F(5))]Pt(C(6)F(5))(2)] 9 unequivocally establish that in the solid state the steric crowding of the new diphenylbutadienyl ligand formed stabilizes an unusual coordinatively unsaturated T-shaped 3-coordinated platinum(II) center. Structure determinations of the mononuclear precursors cis-[Pt(C(6)F(5))(2)(PPh(2)CtriplebondCR)(2)] (R=Ph, tBu, Tol) have been carried out to evaluate the factors affecting the insertion processes. The reactions of the platinum complexes 6 towards neutral ligands (L=CO, py, PPh(2)H, CNtBu) in a 1:1 molar ratio afford related diplatinum derivatives 10-13, whereas treatment with CNtBu (1:2 molar ratio) or 2,2'-bipy (1:1 molar ratio) results in the opening of the chelating ring to give cis,cis-[Pt(C(6)F(5))(L)(2)mu-[1-kappaC(1):2-kappaPP'-C(R)doublebondC(PPh(2))C(PPh(2))doublebondC(R)(C(6)F(5))]Pt(C(6)F(5))(2)] (14, 15). The unsaturated or solvento complexes are unstable in solution evolving firstly, through an unexpected formal 4-1 R (Ph, Tol) migration, to the intermediate diphosphanylbutadienyl isomer derivatives [Pt(C(6)F(5))(S)mu-[C(C(6)F(5))doublebondC(PPh(2))C(PPh(2))doublebondC(R)(2)]M(C(6)F(5))(2)] (16, 18) (X-ray, R=Ph, M=Pt) and, finally, to 1-pentafluorophenyl-2,3-bis(diphenylphosphanyl)naphthalene mononuclear complexes (17, 19) by annulation of a phenyl or tolyl group.  相似文献   

14.
The Lewis acidic pincer with a labile triflate ligand, viz. [Pd(OTf)(PCP)] (PCP = (-)CH(CH(2)CH(2)PPh(2))(2)) was prepared from [PdCl(PCP)] with AgOTf. It reacts readily with neutral bidentate ligands [L = 4,4'-bipyridine (4,4'-bpy) and 1,1'-bis(diphenylphosphino)ferrocene (dppf)] to give dinuclear PCP pincers [{Pd(PCP)}(2)(micro-L)][OTf](2) (L = 4,4'-bpy, 2; dppf,3). [PdCl(PCP)] also reacts with 4-mercaptopyridine in the presence of KOH to give a Lewis basic pincer with a free pyridine functional group [Pd(4-Spy)(PCP)]4. Its metalloligand character is exemplified by the isolation of an asymmetric dinuclear double-pincer complex [{Pd(PCP)}(2)(micro-4-Spy)][PF(6)] 6 bridged by an ambidentate pyridinethiolato ligand. Complexes 1, 2, 3, 4 and 6 have been characterized by single-crystal X-ray diffraction analyses.  相似文献   

15.
Radius U  Attner J 《Inorganic chemistry》2004,43(26):8587-8599
The complex (HNEt(3))[MoCl(NCMe)(Calix)] (1), prepared from the reaction of [MoCl(4)(NCMe)(2)] with p-tert-butylcalix[4]arene, H(4)Calix, in the presence of triethylamine, has been used as a source of the d(2)-[Mo(NCMe)(Calix)] fragment. Complex 1 is readily oxidized with PhICl(2) to afford the molybdenum(VI) dichloro complex [MoCl(2)(Calix)] (2). Both complexes are a convenient entry point into molybdenum(VI) and molybdenum(IV) calixarene chemistry. The reaction of 1 with trimethylphosphine and pyridine in the presence of catalytic amounts [Ag(OTf)] led to the formation of neutral d(2) complexes [Mo(PMe(3))(NCMe)(Calix)] (3) and [Mo(NC(5)H(5))(NCMe)(Calix)] (4). The role of the silver salt in the reaction mixture is presumably the oxidation of the chloromolybdate anion of 1 to give a reactive molybdenum(V) species. The same reactions can also be initiated with ferrocenium cations such as [Cp(2)Fe](BF(4)). Without the presence of coordinating ligands, the dimeric complex [[Mo(NCMe)(Calix)](2)] (5) was isolated. The reaction of 1 with Ph(2)CN(2) led to the formation of a metallahydrazone complex [Mo(N(2)CPh(2))(NCMe)(Calix)] (6), in which the diphenyldiazomethane has been formally reduced by two electrons. Molybdenum(VI) complexes were also obtained from reaction of 1 with azobenzene and sodium azide in the presence of catalytic amounts of silver salt. The reaction with azobenzene led under cleavage of the nitrogen nitrogen bond to an imido complex [Mo(NPh)(NCMe)(Calix)] (7), whereas the reaction with sodium azide afforded the mononuclear molybdenum(VI) nitrido complex (HNEt(3))[MoN(Calix)] (8).  相似文献   

16.
Reaction of [Cp*Ir(micro-H)](2) (5) (Cp* = eta(5)-C(5)Me(5)) with bis(dimethylphosphino)methane (dmpm) gives a new neutral diiridium complex [(Cp*Ir)(2)(micro-dmpm)(micro-H)(2)] (3). Treatment of 3 with methyl triflate at -30 degrees C results in the formation of [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Me)(IrCp*)][OTf] (6). Warming a solution of above 0 degrees C brings about predominant generation of 32e(-) Ir(II)-Ir(II) species [(Cp*Ir)(micro-dmpm)(micro-H)(IrCp*)][OTf] (7). Further heating of the solution of 7 up to 30 degrees C for 14 h leads to quantitative formation of a new complex [(Cp*Ir)(H)(micro-Me(2)PCH(2)PMeCH(2))(micro-H)(IrCp*)][OTf] (8), which is formed by intramolecular oxidative addition of the methyl C-H bond of the dmpm ligand. Intermolecular C-H bond activation reactions with 7 are also examined. Reactions of 7 with aromatic molecules (benzene, toluene, furan, and pyridine) at room temperature result in the smooth sp(2) C-H activation to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Ar)(IrCp*)][OTf] (Ar = Ph (9); Ar = m-Tol (10a) or p-Tol (10b); Ar = 2-Fur (11)) and [(Cp*Ir)(H)(micro-dmpm)(micro-C(5)H(4)N)(H)(IrCp*)][OTf] (12), respectively. Complex also reacts with cyclopentene at 0 degrees C to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(1-cyclopentenyl)(IrCp*)][OTf] (13). Structures of 3, 8 and 12 have been confirmed by X-ray analysis.  相似文献   

17.
The synthesis and characterisation of novel Li and Yb complexes is reported, in which the monoanionic beta-diketiminato ligand has been (i) reduced (SET or 2 [times] SET), (ii) deprotonated, or (iii) C-N bond-cleaved. Reduction of the lithium beta-diketiminate Li(L(R,R'))[L(R,R')= N(SiMe(3))C(R)CHC(R')N(SiMe(3))] with Li metal gave the dilithium derivative [Li(tmen)(mu-L(R,R'))Li(OEt(2))](R = R'= Ph; or, R = Ph, R[prime or minute]= Bu(t)). When excess of Li was used the dimeric trilithium [small beta]-diketiminate [Li(3)(L(R,R[prime or minute]))(tmen)](2)(, R = R'= C(6)H(4)Bu(t)-4 = Ar) was obtained. Similar reduction of [Yb(L(R,R'))(2)Cl] gave [Yb[(mu-L(R,R'))Li(thf)](2)](, R = R[prime or minute]= Ph; or, R = R'= C(6)H(4)Ph-4 = Dph). Use of the Yb-naphthalene complex instead of Li in the reaction with [Yb(L(Ph,Ph))(2)] led to the polynuclear Yb clusters [Yb(3)(L(Ph,Ph))(3)(thf)], [Yb(3)(L(Ph,Ph))(2)(dme)(2)], or [Yb(5)(L(Ph,Ph))(L(1))(L(2))(L(3))(thf)(4)] [L(1)= N(SiMe(3))C(Ph)CHC(Ph)N(SiMe(2)CH(2)), L(2)= NC(Ph)CHC(Ph)H, L(3)= N(SiMe(2)CH(2))] depending on the reaction conditions and stoichiometry. The structures of the crystalline complexes 4, 6x21/2(hexane), 5(C(6)D(6)), and have been determined by X-ray crystallography (and have been published).  相似文献   

18.
A series of structurally characterized new examples of pentacoordinated heteroleptic tungsten(VI)-guanidinates complexes are described. Starting out from [WCl(2)(Nt-Bu)(2)py(2)] (1) (py = pyridine) and the guanidinato transfer reagents (TMEDA)Li[(Ni-Pr)(2)CNi-Pr(2)] (2a) (TMEDA = N,N,N',N'-tetramethylethylendiamine) and [Li(NC(NMe(2))(2))](x) (2b), the title compounds [WCl(Nt-Bu)(2)[(Ni-Pr)(2)CNi-Pr(2)]] (3) and [W(Nt-Bu)(2)Cl{NC(NMe(2))(2)]](2) (6) were selectively formed by the elimination of one mole equivalent of lithium chloride. The isopropyl-substituted guanidinato ligand [(Ni-Pr)(2)CNi-Pr(2)} of monomeric 3 is N(1),N(3)-bonded to the tungsten center. The introduction of the sterically less-demanding tetramethyl guanidinato ligand [NC(NMe(2))(2)] expectedly leads to dimeric 6 exhibiting a planar W(2)N(2) ring with the guanidinato group bridging the two tungsten centers via the deprotonated imino N-atom. The remaining chloro ligand of 3 is labile and can be substituted by sterically less-crowded groups such as dimethylamido or azido that yield the presumably monomeric compounds 4 and 5, respectively. A similar treatment of 6 with sodium azide yields the dimeric azido derivative 7. Reacting [WCl(2)(Nt-Bu)(2)py(2)] directly with an excess of sodium azide leads to the dimeric bis-azide species [[W(Nt-Bu)(2)(N(3))(mu(2)-N(3))py](2)]. The new compounds were fully characterized by single-crystal X-ray diffractometry (except 2, 4, and 5), NMR, IR, and mass-spectroscopy as well as elemental analysis. Compound 5, [W(N(3))(Nt-Bu)(2)[(Ni-Pr)(2)CNi-Pr(2)]], can be sublimed at 80 degrees C, 1 Pa.  相似文献   

19.
A simple synthesis of a chiral phosphane alkene (PAL) involves: 1) palladium-catalyzed Suzuki coupling of 10-bromo-5H-dibenzo[a,d]cyclohepten-5-ol (1) with phenylboronic acid to give quantitatively 10-phenyl-5H-dibenzo[a,d]cyclohepten-5-ol (2); 2) reaction of 2 with Ph(2)PCl under acidic conditions to give a racemic mixture of the phosphane oxide (10-phenyl-5H-dibenzo[a,d]cyclohepten-5-yl)diphenylphosphane oxide ((Ph)troppo(Ph), 3), which is separated into enantiomers by using high-pressure liquid chromatography (HPLC) on a chiral column; 3) reduction with trichlorosilane to give the enantiomerically pure phosphanes (R)- and (S)-(10-phenyl-5H-dibenzo[a,d]cyclohepten-5-yl)diphenylphosphane ((Ph)tropp(Ph), 4). This highly rigid, concave-shaped ligand serves as a bidentate ligand in Rh(I) and Ir(I) complexes. Catalysts prepared from [Rh(2)(mu(2)-Cl)(2)(C(2)H(4))(4)] and (S)-4 have allowed the efficient enantioselective 1,4-addition of arylboronic acids to alpha,beta-unsaturated carbonyls (Hayashi-Miyaura reaction) (5-0.1 mol % catalyst, up to 95% ee). The iridium complex (S,S)-[Ir((Ph)tropp(Ph))(2)]OTf ((S,S)-6; OTf=SO(3)CF(3)) has been used as a catalyst in the hydrogenation of various nonfunctionalized and functionalized olefins (turnover frequencies (TOFs) of up to 4000 h(-1)) and moderate enantiomeric excesses have been achieved (up to 67% ee). [Ir((Ph)tropp(Ph))(2)]OTf reversibly takes up three equivalents of H(2). The highly reactive octahedral [Ir(H)(2)(OTf)(CH(2)Cl(2))(H(2)-(Ph)tropp(Ph))(2)] could be isolated and contains two hydrogenated monodentate H(2)-(Ph)tropp(Ph) phosphanes, one CH(2)Cl(2) molecule, one triflate anion, and two hydrides. Based on this structure and extensive NMR spectroscopic studies, a mechanism for the hydrogenation reactions is proposed.  相似文献   

20.
Hydrogen abstraction by aluminum(III)-oxo intermediates via reaction pathways reminiscent of late transition metal chemistry has been observed. Oxidation of M(+)[(IP(2-))(2)Al](-) (IP = iminopyridine, M = Na, Bu(4)N) yielded [Na(THF)(DME)][(IP(-))(IP(2-))Al(OH)] (3) or [(IP(-))(2)Al(OH)] (4), via O-atom transfer and subsequent C-H activation or proton abstraction, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号