首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution Fourier transform spectra have been recorded from 15–470 cm–1 for the far-infrared trosion-rotation band of O-18 methanol in the vibrational ground state. So far, 57 subbands have been assigned in the 15–220 cm–1 region for a wide range of rotational and torsional states, and their J-independent origins have been determined to an estimated accuracy of ±0.01 cm–1. The observed origins were found to deviate in many cases by several tenths of a cm–1 from the values calculated with the previous molecular parameters. Together with 4 known microwave origins, the new data have been fitted to a model torsion-rotation Hamiltonian in order to refine the set ofb-type molecular constants for the ground state. With the new parameter set, the experimental subband origins are reproduced with an rms error of ±0.02 cm–1, representing a substantial improvement over the earlier situation. The spectroscopic results have also been of great assistance with our assignments of optically-pumped FIR laser emission in CH3 18OH, in providing FIR data for checking the identification of the IR-pump/FIR-laser transition systems through combination loop relations.  相似文献   

2.
The high resolution laser Stark spectra of methanol and13C-substituted methanol have been studied up to Stark fields of about 60 000V/cm with the HCN and DCN lasers. Numerous families of absorption lines have been observed in both parallel and perpendicular polarizations. For methanol, the transitions J k =75 64 A, t=0; J k =114 103 E l , t=0; and J k =173 162 E2, t=0 have been identified while the assignments for13C-substituted methanol are J k =148 157 A, t=0; J k =153 142 A+, t=0; J k =107 96 A, t=0; and J k =279 278 E1, t=0. Zero-field frequencies for the assigned transitions are given with improved accuracy over those calculated from available molecular constants, especially for13CH3OH.  相似文献   

3.
The pure rotational spectrum of 13C2HD was recorded in the range 100–700 GHz. Lines belonging to the ground vibrational state were observed from J = 1 to J = 11. Several absorption lines were also detected in the bending states v4 = 1 (Π), v5 = 1 (Π), v4 = 2 (Σ+ and Δ), v5 = 2 (Σ+ and Δ), v4 = v5 = 1 (Σ?, Σ+ and Δ), v4 = 3 (Π and Φ) and v5 = 3 (Π and Φ). The transition frequencies measured in this work were fitted together with all the infrared lines available in the literature. The global fit allowed a very accurate determination of the vibrational, rotational and ?-type interaction parameters for the bending states of this molecule.  相似文献   

4.
    
Far-infrared (FIR) laser and infrared pump transitions of the O-18 isotopic species of methanol have been assigned for a number of CO2 laser pump lines with the aid of high-resolution Fourier transform spectra in the FIR and CO-stretch band regions. The structures of the FIR laser energy level systems and the transition assignments were established through the use of closed transition combination loops, which also yield improved accuracies for the FIR laser wavenumbers.  相似文献   

5.
The far-infrared laser Stark spectrum of13CH3F has been observed using the 190 m line of the DCN laser. The spectrum was taken at room temperature for both parallel and perpendicular polarizations up to 60,000V/cm. We identify the transition as Jk=32143114 in the ground vibrational state. The measured zero-field frequency for this transition is in agreement with that calculated from the available molecular constants.  相似文献   

6.
27 new, large offset, FIR laser lines from13CH3OH and one from13CD3OH have been discovered by pumping with a high tunability waveguide CW CO2 laser. Optoacoustic measurements of isotopic methyl alcohol have also been performed and the pump offsets of the new and of previously known lines have been measured and checked. Frequency tunability by Stark effect has been observed for 6 strong lines. Some assignments are discussed.  相似文献   

7.
    
The rotational millimeter-wave spectrum of CH3 18OH has been revisited, and 162 transitions of botha- andb-types have been measured in the 119–165 GHz spectral range. The spectrum was recorded using the frequency-modulated millimeter-wave spectrometer at the Justus-Liebig-Universit?t in Gie?en. The CH3 18OH transition assignments were based on energy levels obtained from the far-infrared analysis of S. Zhao (Ph.D. thesis, University of New Brunswick, 1993) using the "Ritz" program of G. Moruzziet al. (J. Mol. Spectrosc.167, 156 (1994)) for direct energy level fitting. The relatively low residuals between calculated and observed frequencies highlight the good quality of the results from this program. The newly measured transitions combined with those existent in the literature have been included in least-squares fits to improve the set of rotational, torsional and centrifugal distortion constants for O-18 methanol.  相似文献   

8.
The microwave spectrum of CD3OH has been studied over the 8 to 58 GHz region, and numerousb-type transitions have been assigned. Many of these belong toP subbranches which descend to the microwave region from subband origins lying much higher in the far-infrared, pass through zero frequency, and return upward again. Others are members ofb-typeQ branches which extend across the region. As well, variousa-typeK-doublet lines arising as transitions directly across the split levels of asymmetry doublets have been identified.  相似文献   

9.
The high-resolution far-infrared (FIR) Fourier transform spectrum of13CH3OH has been studied from 25–350 cm–1, andb-typerR-branches in the torsional ground state have been assigned. The branches have been fitted to phenomeno-logical expansion parameters, which reproduce the branch frequencies generally to well within ±0.001 cm–1. An interesting and relatively novel K=4 perturbation, localized to levels around J=18, has been observed between (nK)=(019) and (125) states.  相似文献   

10.
We have increased the frequency tunability of our CW waveguide CO2 lasers by means of an acoustooptic amplitude modulator, operating at the fixed frequency of 90 MHz. The up-shifted, or down-shifted, laser optical sideband can be generated independently by adjusting the orientation of the modulator. The efficiency is larger than 50%. The frequency tunability of the CO2 laser around each laser line is thus increased by 180 MHz. To demonstrate the possibilities of this method, a source composed of the above modulator and of a CW, 300 MHz tunable waveguide CO2 laser has been used for the search of new large offset FIR laser lines from optically pumped CH3OH and13CH3OH molecules. As a result 15 and 10 new large offset laser lines were discovered respectively. New assignments of some laser lines are also proposed. We have also measured the Stark effect, the offset, and the polarization of other already known lines. In particular a Stark effect frequency tuning of about 1 GHz is demonstrated for a laser line at 208.399 m.  相似文献   

11.
Using a quasi-CW CO2 oscillator-amplifier combination with peak power 300 Watt, we have generated FIR laser emission in weak absorption bands of CH3OH. 40 new lines are reported, and their wavelengths are measured with a relative accuracy of 5×10–5. A total of 72 lines are assigned. 34 of these involve torsional n=1, 2, and 3 states of the CO stretch and the vibrational ground state. The remaining lines are associated with the CH3-rock, OH-bend, and CH3-deformation modes. The latter are located 1460 cm–1 above the ground state, and are pumped by simultaneous vibrational excitation and torsional deexcitation.  相似文献   

12.
Fourier-transform far-infrared spectra of CH318OH in the 15-470 cm−1 region have been analyzed by means of the Ritz assignment program. The far-infrared data have been combined with the literature microwave and millimeter-wave measurements in a full global fitting of the first three torsional states (νt = 0, 1, and 2) of the CH318OH ground vibrational state. The fitted dataset includes 550 microwave and millimeter-wave lines and more than 17 000 Fourier-transform transitions covering the quantum number ranges J ? 30, K ? 15, and νt ? 2. With incorporation of 79 adjustable parameters, the global fit achieved convergence with an overall weighted standard deviation of 1.072, essentially to within the assigned measurement uncertainties of ±50 kHz for almost all of the microwave and millimeter-wave lines and ±6 MHz (0.0002 cm−1) to ±15 MHz (0.0005 cm−1) for the Fourier-transform far-infrared measurements. Based on the global fit results, a database has been compiled containing transition frequencies, quantum numbers, lower state energies and transition strengths. This database will provide support for present and future astronomical studies, such as the on-going Orion surveys in preparation for the launch of the Herschel Space Observatory, in identifying isotopic methanol contributions to interstellar spectra.  相似文献   

13.
We have investigated the 13CH3I isotopomer of methyl iodide as a source of Far Infrared (FIR) laser radiation using the optical pumping technique. The molecule is pumped by using a pulsed waveguided CO2 laser, driven by a novel all solid state power supply that lases on the 10HP band as well as the regular bands. We discovered and assigned two new FIR laser emissions and we give further spectroscopic information about polarization and pump frequency offset for five already known lines.  相似文献   

14.
    
Laser Stark spectra have been observed for CD3OH and13CH3OH using the 311 m line of the HCN laser. The spectra were taken for both parallel and perpendicular polarizations up to 60,000 Volts/cm. For CD3OH, the two characteristic structures in the spectra have been identified as the JK=144133, A± doublet in the vt=0 torsional state. For13CH3OH, the low field structure observed is assigned as JK=153142, A in the vt=0 torsional state.  相似文献   

15.
The microwave rotational spectra of the trans conformer of 3-fluorophenol have been observed in excited torsional states and analyzed in the frequency range 12.0-43.0 GHz using conventional microwave and Radio-Frequency Microwave Double Resonance (RFMWDR) techniques. Analysis of the ground torsional state spectrum has been extended to higher rotational states. Least-squares analysis of three sets of rotational transitions yield rotational and centrifugal distortion constants for the ground and first two excited torsional states. A nonlinear behavior of the variation of inertial defect with the torsional quantum number was observed.  相似文献   

16.
We report here the discovery of 13 new far-infrared laser lines from12CH2F2 and seven new lines from13CH2F2. Most of the new lines were pumped by high-J lines of the 9R branch of a cw-CO2 laser. Wavelengths range from 97.6 to 616.18 μm. Frequency, pump offset, relative polarization, and relative intensity were measured for most of the new lines.  相似文献   

17.
We use a 13CO2 laser as optical pumping source to search for new THz laser lines generated from 13CH3OH. Nineteen new THz laser lines (also identified as far-infrared, FIR) ranging from 42.3 μm (7.1 THz) to 717.7 μm (0.42 THz) are reported. They are characterized in wavelength, offset, relative polarization, relative intensity, and optimum working pressure. We have assigned eight laser lines to specific rotational energy levels in the excited state associated with the C-O stretching mode.  相似文献   

18.
By solving the density matrix equations of a quantum system, the output power intensity of an optically pumped CH3OH FIR laser (CH3OH-OPFIRL) was calculated by means of iteration method, and the spectral characteristics were got. Base on the calculation, optimization of operating parameters including operating gas pressure, pumped power and output coupling coefficient of the CH3OH cavity laser were systematically studied. Experimental, a series of FIR emissions of the CH3OH cavity laser pumped by TEA-CO2 laser with 9P(16) line were measured. The experimental results were in good agreement with theoretical calculations. The project was supported by the Special Research Foundation of Doctorate Station in University of P.R.C.  相似文献   

19.
Nitrogen-14 (spin I = 1) has always been a nucleus difficult to observe in solid-state NMR and until recently its observation was restricted to one-dimensional (1D) spectra. We present here the first 3D 1H–13C–14N NMR correlation spectrum. This spectrum was acquired on a test sample l-histidine·HCl·H2O using a recently developed technique, which consists in indirectly observing 14N nuclei via dipolar recoupling with an HMQC-type experiment.  相似文献   

20.
Twenty-seven new far-infrared laser lines from the isotopomers of methanol: 12CD3OH, 12CH3OD, and 12CH2DOH, were obtained by optically-pumping the molecules with an efficient cw CO2 laser. The CO2 laser provided pumping from regular, sequence, and hot-band CO2 laser transitions. The 2-m long far-infrared cavity was a metal-dielectric waveguide closed by two, flat end mirrors. Several short-wavelength (below 100 m) lines were observed. The frequencies of 28 laser lines observed in this cavity (including new lines and already known lines) were measured with a fractional uncertainty limited by the fractional resetability of the far-infrared laser cavity, of 2 parts in 107.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号