首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New methylene blue (NMB) dye incorporated into AlMCM‐41 surfactant‐free and hybrid surfactant‐AlMCM‐41 mesophase. UV‐vis evidence shows that new methylene blue dye protonated in both cases of zeolites. New methylene blue is electroactive in zeolites and their electrochemical activity has been studied by cyclic voltammetry and compared to that of NMB in aqueous solutions. New methylene blue molecules are not released to the solution during CV measurements and are accessible to H3O+ ions. The presence of surfactant affects the kinetics of the redox process through proton ions diffusion. The midpoint potentials (Em) values show that new methylene blue dye incorporated into AlMCM‐41 can be reduced easily with respect to solution new methylene blue. New methylene blue interacting with surfactant polar heads and residual Br? ions as a results, it shows a couple of peaks in high potential with respect to new methylene blue solution. The electrode made with methylene blue‐AlMCM‐41 without surfactant was used for the mediated oxidation of ascorbic acid. The anodic peak current observed in cyclic voltammetry was linearly dependent on the ascorbic acid concentration. The calibration plot was linear over the ascorbic acid concentration range 1.0×10?5 to 5.0×10?4 M. The detection limit of the method is 1.0×10?5 M, low enough for trace ascorbic acid determination in various real samples.  相似文献   

2.

Electrochemical polymerization of azure B from sulfuric acid solution was carried out by using cyclic voltammetry. The electrolytic solution consisted of 5.0 mmol · dm?3 azure B and 0.3 mol · dm?3 H2SO4. The temperature for polymerization was controlled at 20°C. A blue film, i.e., poly(azure B) was formed on a platinum foil and had a electrochemical reversibility, stability and a fast charge transfer ability in the 0.5 mol · dm?3 Na2SO4 with pH ≤4.0 solution. The currents of both anodic and cathodic peaks are proportional to υ1/2 at the scan rate (υ) region of 25 and 600 mV · s?1 on the cyclic voltammograms. The conductivity of poly(azure B) is 2.8×10?6 S · cm?1 at 20°C. The UV‐visible spectrum and Raman spectrum of the polymer are different from those of the monomer. A possible polymerization mechanism of azure B was also proposed.  相似文献   

3.
A novel poly(methylene blue)/graphene composite glassy carbon electrode was fabricated and the electrochemical behavior of maltol at the modified electrode was studied by cyclic voltammetry. In phosphate-buffered solution, the modified electrode exhibited excellent electrocatalytic activity towards the electrochemical oxidation of maltol. Under optimized conditions, the oxidation peak current showed a linear relationship with the concentrations of maltol in the ranges of 8.00?×?10?7 to 4.00?×?10?5 and 4.00?×?10?5 to 5.40?×?10?4 mol L?1, with a detection limit of 6.50?×?10?8 mol L?1. The performance of the developed method was validated in terms of linearity (r?=?0.9981 and 0.9955), recovery (97.0?99.3 %), reproducibility (relative standard deviations?≤?3.1 %, n?=?6), and robustness. The method shows excellent sensitivity, selectivity, and reproducibility and has been successfully applied to analyzing maltol in a wide variety of food products.  相似文献   

4.
A promising nickel cobaltite oxide (NiCo2O4) composite electrode material was successfully synthesized by a sol-gel method and followed by a simple sintering process. The microstructure and surface morphology of NiCo2O4 modified by hexadecyltrimethylammonium bromide (CTAB) and polyvinyl alcohol were physically characterized by powder X-ray diffraction and scanning electron microscopy. Meanwhile, electrochemical performance was widely investigated in 2 M KOH aqueous electrolyte using cyclic voltammetry, galvanostatic charge-discharge test, and electrochemical impedance spectroscopy. The results show that evident porous microstructure was successfully fabricated by CTAB. The NiCo2O4 controlled by CTAB exhibited highly specific capacitance of 1,440 F?g?1 at a current density of 5 mA?cm?2. Remarkably, it still displays desirable cycle retention of 94.1 % over 1,000 cycle numbers at a current density of 20 mA?cm?2. The excellent electrochemical performance suggests its potential application in electrode material for electrochemical capacitors.  相似文献   

5.
Water-insoluble β-cyclodextrin polymer (β-CDP) crosslinked by citric acid was obtained with a yield of 65% through an environment friendly synthesis procedure. FT-IR spectra disclosed that the hydroxyl groups of β-CD had reacted and condensated with the carboxyl groups of citric acid, and at the same time the structural characteristics of β-CD were essentially maintained in β-CDP. The β-CDP exhibited notable adsorption capability toward phenol (q max = 13.8 mg g?1) and especially large adsorption capability toward methylene blue (q max = 105 mg g?1). The concentration of methylene blue in water could be reduced to 0.11 mg L?1 by the β-CDP, indicating the excellent adsorption sensitivity of β-CDP toward methylene blue. The adsorption results disclosed that the interior cavity and inclusion property of β-CD were maintained in the synthesized β-CDP.  相似文献   

6.
Two coordination polymers, [Ni(bim)2(L1)(H2O)2] n (CP-1) and [Zn(bim)(L1)(Cl)] n (CP-2) (bim = 1-benzylimidazole, L1 = terephthalic acid), were synthesized and characterized by physicochemical and spectroscopic methods. The Ni(II) center in CP-1 is octahedral, while the Zn(II) center in CP-2 is tetrahedral. CP-1 and CP-2 were used to modify carbon paste electrodes to assess their effect on the electrochemical behavior of ferricyanide. The redox reactions of ferricyanide on both electrodes proved to be reversible and diffusion controlled, with ferricyanide diffusion coefficients for CP-1 and CP-2 of 1.88 × 105 and 3.44 × 105 cm2 s?1, respectively. These coordination polymers were also investigated for their adsorption behavior toward two dyes: Chicago sky blue and methylene blue. CP-1 and CP-2 both rapidly adsorbed the anionic Chicago sky blue dye by different intermolecular interactions; in contrast, the cationic methylene blue dye was adsorbed to a lesser extent. The adsorption of these CPs depends on the charge but not the size of the dye. Addition of methanolic potassium nitrate solution caused the release of the adsorbed dyes.  相似文献   

7.
《Analytical letters》2012,45(6):1083-1095
Abstract

A sensitive electrochemical DNA biosensor based on nano-ZnO/chitosan composite matrix for DNA hybridization detection was developed. The Nano-ZnO was synthesized by the hydrothermal method and dispersed in chitosan, which was used to fabricate the modification of the glassy carbon electrode (GCE) surface. The ZnO/chitosan-modified electrode exhibited good biocompatibility and excellent electrochemical conductivity. The hybridization detection was monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The established biosensor can effectively discriminate complementary target sequence and two-base-mismatched sequence, with a detection limit of 1.09 × 10?11 mol L?1 of complementary target.  相似文献   

8.
In this paper, self-assembled Prussian blue nanocubic particles on nanoporous glassy carbon was developed. The morphology of the PBNP-modified porous glassy carbon was characterized by scanning electron microscopy. The PBNP-GCE-red film-modified electrode was used for the sensitive detection of hydrogen peroxide. The electrochemical behavior of the resulting sensor was investigated using cyclic voltammetry and chronoamperometry. The value of α, k cat, and D was calculated as 0.35, 1.7 × 105 cm3 mol?1 s?1, and 2.6 × 10?5 cm2 s?1, respectively. The calibration curve for hydrogen peroxide determination was linear over 0–600 μM with a detection limit (S/N = 3) of 0.51 μM.  相似文献   

9.
The electrochemical polymerization of methylene green has been carried out using cyclic voltammetry. The electrolytic solution consisted of 4° 10?3 mol/L methylene green, 0.1 mol/L NaNO3 and 1 × 10?2 mol/L sodium tetraborate with pH 11.0. The temperature for polymerization is controlled at 60°C. The scan potential is set between ?0.2 and 1.2 V (vs. Ag/AgCl with saturated KCl solution). There are an anodic peak and a cathodic peak on the cyclic voltammogram of poly (methylene green) at pH≤3.8. Both peak potentials shift towards negative potentials with increasing pH value, and their peak currents decrease with increasing pH value. Poly (methylene green) has a good electrochemical activity and stability in aqueous solutions with pH≤3.8. The UV‐Visible spectrum and FTIR spectrum of poly (methylene green) are different from those of methylene green.  相似文献   

10.
Olivine-type LiFePO4 is one of the most promising cathode materials for lithium-ion batteries, but its poor conductivity and low lithium-ion diffusion limit its practical application. The electronic conductivity of LiFePO4 can be improved by carbon coating and metal doping. A small amount of La-ion was added via ball milling by a solid-state reaction method. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM)/mapping, differential scanning calorimetry (DSC), transmission electron microscopy (TEM)/energy dispersive X-ray spectroscopy (EDS), and total organic carbon (TOC). Their electrochemical properties were investigated by cyclic voltammetry, four-point probe conductivity measurements, and galvanostatic charge and discharge tests. The results indicate that these La-ion dopants do not affect the structure of the material but considerably improve its rate capacity performance and cyclic stability. Among the materials, the LiFe0.99La0.01PO4/C composite presents the best electrochemical behavior, with a discharge capacity of 156 mAh g?1 between 2.8 and 4.0 V at a 0.2 C-rate compared to 104 mAh g?1 for undoped LiFePO4. Its capacity retention is 80% after 497 cycles for LiFe0.99La0.01PO4/C samples. Such a significant improvement in electrochemical performance should be partly related to the enhanced electronic conductivities (from 5.88?×?10?6 to 2.82?×?10?3 S cm?1) and probably the mobility of Li+ ion in the doped samples. The LiFe0.99La0.01PO4/C composite developed here could be used as a cathode material for lithium-ion batteries.  相似文献   

11.
In this paper, poly[poly(N-vinyl-carbazole)] (PPVK) films electrodeposited in tetrahydrofuran (THF) containing 12 % boron trifluoride diethyl etherate (BFEE) were studied as electrode active material for supercapacitors. The morphology and thermal property were characterized by SEM, atomic force microscopy (AFM), and thermogravimetry (TG), respectively. The electrochemical capacitive behaviors of the PPVK films were also investigated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The electrochemical results showed that the specific capacitance of PPVK films in CH3CN solution was about 126 mF cm?2 at 1.5 mA cm?2 and the capacitance retention was only 14.4 % after 1000 cycles. It was exciting to improve the specific capacitance up to 169.3 mF cm?2 at 1.5 mA cm?2 and to make the cyclic stability increase to 81.8 % capacitance retention after 5000 cycles when the equivalent BFEE was added into the CH3CN solution containing 0.05 M Bu4NBF4 electrolyte. These results clearly demonstrated that BFEE was an efficient promoter for the enhancement of the capacitance performance of PPVK films. Therefore, with the help of BFEE electrolyte, the PPVK films have potential application as capacitive materials in high-performance energy storage devices.  相似文献   

12.
Layered nanocomposite of methylene blue (MB)-intercalated vanadium oxide was obtained through a simple hydrothermal synthesis method using MB, V2O5, and NaI as starting materials. The intercalation reaction was proven to be successful using X-ray diffraction pattern. The MB-V2O5 nanocomposite was characterized using a scanning electron micrograph, infrared spectra, thermogravimetric analysis, UV spectra, and electrochemical measurements. The intercalated MB cations showed a fine diffusion-controlled electrochemical redox process and facilitated the immobilized horseradish peroxidase’s (HRP) good catalytic reduction upon H2O2. The as-prepared MB-V2O5/HRP biosensor showed a linear response to H2O2 over a range from 2.0?×?10?6 to 9.5?×?10?5 M with a detection limit of 9.7?×?10?7 M (S/N ratio?=?3).  相似文献   

13.
LaFeO3 nanoparticles of approximately 22 nm in size were synthesized and characterized by XRD and TEM. A novel glassy carbon electrode modified with LaFeO3 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode exhibited strong promoting effect and high stability toward the electrochemical oxidation of dopamine (DA), which gave reversible redox peaks with a formal potential of 0.145 V (vs. Ag/AgCl) in pH 7.0 phosphate buffer solution. The anodic peak current (measured by constant potential amperometry) increased linearly with the concentration of dopamine in the range from 1.5?×?10?7 to 8.0?×?10?4 M. The detection limit was 3.0?×?10?8 M. The relative standard deviation of eight successive scans was 3.47% for 1.0?×?10?6 M DA. The interference by ascorbic acid was eliminated efficiently. The method was used to determine DA in dopamine hydrochloride injections and showed excellent sensitivity and recovery.  相似文献   

14.
Layered Co3O4 composed of oriented self-assembled micrometer-length rectangular 2D flakes has been successfully synthesized by a hydrothermal method in combination with subsequent calcination process. Structural and morphological characterizations were performed using powder X-ray diffraction and field emission scanning electron microscopy. The component and thermal stability of the sample were measured by FT-IR and thermal analyses, including thermogravimetry and differential thermal analysis. The electrochemical performances of the as-prepared Co3O4 product were investigated by cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and constant current charge/discharge techniques. The electrochemical results demonstrate that the layered Co3O4 product displays good capacitive behavior with a specific capacitance of 263 F?g?1 within a potential range of ?0.4–0.55 V at a current density of 1 A?g?1 and a large capacity retention with 89.4 % of the initial capacitance over 1,000 consecutive cycles at 3 A?g?1, indicating that the as-prepared Co3O4 product can be a promising electroactive material for supercapacitor.  相似文献   

15.
In this study, the use of the organic fraction of municipal solid waste as an abundant and low-cost raw material for producing activated carbon was investigated. For this purpose, ZnCl2 was used as a chemical activation agent and the carbonization process took place at 800 °C in N2 atmosphere. Seven sorbents were prepared by chemical activation (pyrolysis under N2 atmosphere at temperature of 800 °C after impregnation with ZnCl2) with different ratios of ZnCl2. The optimum ratio of organic fraction of municipal solid waste to ZnCl2 was inspected via methylene blue number and iodine number (ASTM Designation: D4607–94). The results showed that the adsorbent with 60 % ZnCl2/raw material was the most appropriate one with a satisfactory adsorption capacity, 112.4 mg g?1 for methylene blue and 134.0 mg g?1 for iodine. In addition, the structural analysis of this sorbent was performed using FT-IR, BET surface area, SEM–EDX and thermal analysis. Application of this sorbent to remove Cr(VI) from wastewater was studied to find an adsorption capacity of 66.7 mg g?1. The experimental adsorption equilibrium data were fitted to Langmuir adsorption model with an acceptable adsorption capacity of 66.7 mg g?1.  相似文献   

16.
Resistive monoclinic bismuth vanadate (BiVO4) nanocrystals in the form of thin films were obtained by the solution combustion synthesis coupled with the dip-coating deposition process. The structure, morphology, and optical properties of BiVO4 nanocrystals were characterized by means of x-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy. The photoelectrochemical properties were obtained by cyclic voltammetry and chronoamperometry techniques in potassium chloride (KCl) electrolyte solution under distinct visible light sources irradiation condition. Under blue InGaN light emitting diode (LED) irradiation, the electrode has a better efficiency, faster response time (260 ms), and faster decay time (65 ms), when compared with the irradiation by dichroic lamp. Besides, the photocurrent density (j ph) is approximately 39 times higher than j ph obtained under dichroic lamp. The performance analysis based on the methylene blue degradation reaction has shown that the BiVO4 material has higher electroactivity under InGaN LED irradiation condition, with estimated k obs value of 200 × 10?4 min?1, which is a little higher than the value obtained with dichroic lamp illumination. In the dark condition, the BiVO4 presented much lower photocatalytic activity.  相似文献   

17.
A novel enzyme-free electrochemical sensor for H2O2 was fabricated by modifying an indium tin oxide (ITO) support with (3-aminopropyl) trimethoxysilane to yield an interface for the assembly of colloidal gold. Gold nanoparticles (AuNPs) were then immobilized on the substrate via self-assembly. Atomic force microscopy showed the presence of a monolayer of well-dispersed AuNPs with an average size of ~4 nm. The electrochemical behavior of the resultant AuNP/ITO-modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. This non-enzymatic and mediator-free electrode exhibits a linear response in the range from 3.0?×?10?5 M to 1.0?×?10?3 M (M?=?mol?·?L?1) with a correlation coefficient of 0.999. The limit of detection is as low as 10 nM (for S/N?=?3). The sensor is stable, gives well reproducible results, and is deemed to represent a promising tool for electrochemical sensing.
Figure
AuNPs/ITO modified electrode prepared by self-assembly method exhibit good electrocatalytic activity towards enzyme-free detection H2O2. The linear range of typical electrode is between 3.0?×?10?5 M and 1.0?×?10?3 M with a correlation coefficient of 0.999 and the limit detection is down to 1.0?×?10?8 M.  相似文献   

18.
Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge–discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g?1 is obtained. When the acid-treated sample is heated at 300 °C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g?1. The rate capability study suggests that the sample provides about 150 mAh g?1 at a specific discharge current of 1.25 A g?1. Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.  相似文献   

19.
To explore the dependences of morphology and electrochemical performance of polyaniline/nickel hexacyanoferrate (PANI/NiHCF) nanogranules on pH value of the reaction system, electrodeposition of PANI/NiHCF nanogranules was performed across a pH range from 0 to 7 on carbon nanotubes (CNTs)-modified platinum substrate by cyclic voltammetry in a mixture of 0.002 mol L?1 NiSO4, 0.25 mol L?1 Na2SO4, 0.002 mol L?1 K3Fe(CN)6, and 0.01 mol L?1 aniline solutions. The morphology and structure of PANI/NiHCF nanogranules were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, respectively. The supercapacitive performances of the nanogranules were investigated with cyclic voltammetry (CV), charge/discharge tests, and electrochemical impedance spectroscopy (EIS). The results showed that the nanogranules with different morphology and sizes were obtained with the change of pH values from 0 to 7, which could control the mechanism of homogeneous or heterogeneous nucleation directly. The nanogranules were dispersed in matrix uniformly at pH 0 and pH 1, while the size of which decreased with the increase of pH values. The smooth cross-linking network structure was found from pH 2 to 7. The structure of PANI/NiHCF nanogranules had slightly changed from pH 0 to 7. PANI/NiHCF nanogranules had good electrochemical performance from pH 0 to 7 in a mixture of 0.5 mol L?1 H2SO4 and 0.5 mol L?1 KNO3 solutions, and the highest specific capacitance value of 274 F g?1 was obtained at current densities of 2 mA cm?2 in neutral medium. PANI/NiHCF nanogranules had high stability in neutral medium after 2,000 cycles by CV.  相似文献   

20.
LiFePO4/C and LiYb0.02Fe0.98PO4/C composite cathode materials were synthesized by simple solution technique. The samples were characterized by X-ray diffraction, scanning electron microscope, and thermogravimetric–differential thermal analysis. Their electrochemical properties were investigated by cyclic voltammetry, four-point probe conductivity measurements, and galvanostatic charge and discharge tests. The carbon-coated and Yb3+-doped LiFePO4 sample exhibited an enhanced electronic conductivity of 1.9 × 10?3 Scm?1, and a specific discharge capacity of 146 mAhg?1 at 0.1 C. The results suggest that the improvement of the electrochemical performance can be attributed to the ytterbium doping, which facilitates the phase transformation between triphylite and heterosite during cycling, and the conductivity improvement by carbon coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号