首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical combination of the magnetic dinuclear anion [MM'(C2O4)(NCS)8](4-) (MM' = Cr(III)Cr(III), Cr(III)Fe(III)) with the ET organic pi-donor (ET = BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) gives rise to two new isostructural molecular hybrid salts ET5[MM'(C2O4)(NCS)8], with MM' = CrCr (1), CrFe (2). The molecular structure of compound 1 has been determined by single crystal X-ray diffraction. The particular arrangement of the organic units consists of an unprecedented two-dimensional organic sublattice nearly similar to that observed in kappa-phase structures. For both compounds, the magnetic susceptibility measurements indicate (i) the ET radicals do not contribute to the magnetic moment probably due to the presence of strong antiferromagnetic interaction between them, and (ii) in the anion, the magnetic coupling is antiferromagnetic for 1 (J = -3.65 cm(-1)) and ferromagnetic for 2 (J = 1.14 cm(-1), J being the parameter of the exchange Hamiltonian H = -2JS1S2). The field dependence of the magnetization of compound 2 at 2.0 K gives further evidence of the S = 4 ground-state arising from the interaction between S = 3/2 Cr(III) and S = 5/2 Fe(III). EPR measurements confirm the nature of the magnetic interactions and the absence of any contribution from the organic part, as observed from the static magnetic measurement. Conductivity measurements and electronic band structure calculations show that both salts are semiconductors with low activation energies.  相似文献   

2.
[(TPA)(OH)FeIIIOFeIII(OH)(TPA)][Fe(CA)3]0.5(BF4)0.5.1.5MeOH.H2O (1) which possesses both the [FeIII(CA)3]3- (CA= chloranilate) and hydroxooxoiron(III) ions has had its structure determined by single-crystal X-ray diffraction. The 2-300 K magnetic susceptibility of 1 provides the magnetic parameters, g = 2.07, J/kB = -165 K (115 cm-1), theta = -1 K, and the spin impurity, rho = 0.05, which indicates a strong antiferromagnetic interaction between iron(III) ions via the oxo anion.  相似文献   

3.
A new iron(III) arsenate templated by ethylenediamine, (C2H10N2) [Fe(HAsO4)2(H2AsO4)](H2O), has been prepared by hydrothermal synthesis. The unit-cell parameters are a = 8.705(3) A, b = 16.106(4) A, c = 4.763(1) A, beta = 90.63(3) degrees; monoclinic, P2(1) with Z = 2. The compound exhibits a chain structure along the c-axis with the ethylenediammonium cations as counterion. The chains show isolated FeO6 octahedra with two HAsO4 and one H2AsO4 tetrahedra per FeO6 octahedron. The ESR spectrum at 5.0 K is isotropic with a g-value of 2.0, which remains practically unchanged at room temperature. Magnetic measurements indicate the presence of antiferromagnetic interactions. A value of -0.835 K for the J-exchange parameter has been calculated by fitting the magnetic data to a model for antiferromagnetic chains of spin S = 5/2.  相似文献   

4.
A new series of homo- and heterometallic oxalato-bridged dinuclear compounds of formulas [Et4N]4[MM'(ox)(NCS)8] ([Et4N]+ = [(C2H5)4N]+; ox = C2O4(2-)) with MM' = Cr(III)-Cr(III) (1), Fe(III)-Fe(III) (2), and Cr(III)-Fe(III) (3) is reported. They have been structurally characterized by infrared spectra and single-crystal X-ray diffraction. The three compounds are isostructural and crystallize in the orthorhombic space group Cmca with Z = 8, a = 16.561(8) A, b = 13.481(7) A, and c = 28.168(8) A for 1, a = 16.515(2) A, b = 13.531(1) A, and c = 28.289(4) A for 2, a = 16.664(7) A, b = 13.575(6) A, and c = 28.386(8) A for 3. The structure of 3 is made up of a discrete dinuclear anion [CrFe(ox)(NCS)8]4- and four disordered [Et4N]+ cations, each of them located on special positions. The anion, in a crystallographically imposed C2h symmetry, contains metal cations in distorted octahedral sites. The Cr(ox)Fe group, which is planar within 0.02 A, presents an intramolecular metal-metal distance of 5.43 A. Magnetic susceptibility measurements indicate antiferromagnetic pairwise interactions for 1 and 2 with J = -3.23 and -3.84 cm-1, respectively, and ferromagnetic Cr-Fe coupling with J = 1.10 cm-1 for 3 (J being the parameter of the exchange Hamiltonian H = -2JS1S2). The ESR spectra at different temperatures confirm the magnetic susceptibility data.  相似文献   

5.
The structure of the complex, [Fe2(II)Fe2(III)(HCOO)10(C6H7N6)n, (1) exhibits a neutral two-dimensional layer network of alternating iron(II) and iron(III) ions, bridged equatorially by formate groups. All iron atoms are octahedrally coordinated, with iron(III) coordinating axially to one gamma-picoline and one formate group, while the iron(II) centers interact axially with two gamma-picoline groups, above and below the layer plane. The complex crystallizes in the triclinic space group P1 at all studied temperatures [at 120 K, the cell dimensions are: a = 10.228(1), b = 12.071(1), c = 12.072(1) A, alpha = 89.801(2), beta = 71.149(2), gamma = 73.371(2) degrees]. An intralayer antiferromagnetic exchange interaction of J = -2.8 cm(-1) between iron(II) and iron(III) was observed in the magnetic studies. Decreasing the temperature to close to 20 K causes a magnetic-ordering phenomenon to occur and a low-temperature phase with a long-range antiferromagnetic spin orientation appears. The magnetic phase transition was confirmed by M?ssbauer spectroscopic studies at temperatures above and below the critical temperature. Structural information of 1 from synchrotron X-ray diffraction data collected at room temperature and 16 K suggests that the antiferromagnetic ordering is caused by an enhanced pi-pi interaction between chi-picoline groups from adjacent layers.  相似文献   

6.
The reaction of [M(CN)6]3- (M = Cr3+, Fe3+, Co3+) with the nickel(II) complex of 2,4-diamino-1,3,5-triazin-6-yl-{3-(1,3,5,8,12-pentaazacyclotetradecane)} ([NiL]2+) in excess of ANO3 or ACl (A = Li+, Na+, K+, Rb+, Cs+, NH4+) leads to the cyano-bridged dinuclear assemblies A{[NiL][M(CN)6]}.xH2O (x = 2-5). X-ray structures of Li{[NiL][Cr(CN)6]}.5H2O, NH4{[NiL][Cr(CN)6]}.3.5H2O, K{[NiL][Cr(CN)6]}.4H2O, K{[NiL][Fe(CN)6]}.4H2O, Rb{[NiL][Fe(CN)6]}.3.5H2O, and Cs{[NiL][Fe(CN)6]}.3.5H2O, as well as the powder diffractometry of the entire Fe(III) series, are reported. The magnetic properties of the assemblies are dependent on the monocation A and discussed in detail. New efficient pathways for ferromagnetic exchange between Ni(II) and Fe(III) or Cr(III) are demonstrated. Field dependencies of the magnetization for the Fe(III) samples at low temperature and low magnetic field indicate a weak interchain antiferromagnetic coupling, which is switched to ferromagnetic coupling at increasing magnetic field (metamagnetic behavior). The interchain magnetic coupling can be tuned by the size of the A cations.  相似文献   

7.
The binuclear complex NiII2L(H2O)2(ClO4)2(1) and the neutral tetranuclear bimetallic compounds [{M(III)(phen)(CN)4}2{NiII2L(H2O)2}].2CH3CN with M=Fe (2) and Cr (3)[H2L=11,23-dimethyl-3,7,15,19-tetraazatricyclo[19.3.1.1(9,13)]hexacosa-2,7,9,11,13(26),14,19,21(25),22,24-decaene-25,26-diol] have been synthesized and the structures of and determined by single crystal X-ray diffraction. and are isostructural compounds whose structure is made up of centrosymmetric binuclear cations [Ni2(L)(H2O)2]2+ and two peripheral [M(phen)(CN)4]- anions [M=Fe (2) and Cr (3)] acting as monodentate ligands towards the nickel atoms through one of their four cyanide nitrogen atoms. The environment of the metal atoms in 2 and 3 is six-coordinated: two phen-nitrogen and four cyanide-carbon atoms at the iron and chromium atoms and a water molecule, one cyanide-nitrogen and two phenolate-oxygens and two imine-nitrogens from the binucleating ligand L2- at the nickel atom build distorted octahedral surroundings. The values of the FeNi and CrNi separations through the single cyanide bridge are 5.058(1) and 5.174(2)A respectively, whereas the Ni-Ni distances across the double phenolate bridge are 3.098(2)(2) and 3.101(1) A (3). The magnetic properties of have been investigated in the temperature range 1.9-290 K. The magnetic behaviour of corresponds to that of an antiferromagnetically coupled nickel(II) dimer with J=-61.0(1) cm-1, the Hamiltonian being defined as H=-J S(A).S(B). An overall antiferromagnetic behaviour is observed for and with a low-lying singlet spin state. The values of the intramolecular magnetic couplings are J(Fe-Ni)=+17.4(1) cm-1 and J(Ni-Ni(a))=-44.4(1) cm-1 for and J(Cr-Ni)=+11.8(1) cm-1 and J(Ni-Ni(a))=-44.6(1) cm-1 for [H=-J(M-Ni)(S(M).S(Ni)+S(Ma).S(Nia))-J(Ni-Nia)S(Ni)S(Nia)]. Theoretical calculations using methods based on density functional theory (DFT) have been employed on in order to analyze the efficiency of the exchange pathways involved and also to substantiate the exchange coupling parameters.  相似文献   

8.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

9.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

10.
Five new chloranilato-bridged binuclear chromium (III) complexes have been synthesized and identified as [Cr2(CA)L4]-(ClO4)4[L denotes 5-methyl-1,10-phenanthroline (Me-phen); 2,9-dimethyl-1, 10-phenanthroline ( Me2-phen); 5-chloro-1,10-phenanthroline(Cl-phen); diaminoethane (en) or 1,3-diaminopropane (pn)], where CA represents the dianion of chloranilic acid. Based on elemental analyses, molar conductivity and magnetic moment of room-temperature measurements, and IR and electronic spectral studies, it is proposed that these complexes have CA-bridged structures and consist of two chromium (III) ions, each in an octahedral environment. The complexes [Cr2(CA)(Me-phen)4](ClO4)4(1) and [Cr2(CA)(Me2-phen)4](ClO4)4(2) were further characterized by variable temperature (4.2-300 K) magnetic susceptibility measurements and the observed data were successfully simulated by the equation based on the spin Hamiltonian operator, , giving the exchange parameter J = -7.8 cm-1 for (1) and J= -6.5 cm*1 for (2). This result  相似文献   

11.
A new open framework iron(III) phosphite with formula (C5H18N3)[Fe3(HPO3)6].3H2O has been prepared by hydrothermal synthesis with N-(2-aminoethyl)-1,3-propanediamine as a templating agent. The crystal structure was solved from single-crystal X-ray diffraction data in the trigonal space group R. The unit cell parameters are a= 8.803(1) A and c= 25.292(2) A with Z = 3. The complex pillared structure can be described as two interpenetrating subnets, one organic, [(C5H18N3).3H2O]3+, and one inorganic, [Fe3(HPO3)6]3-. In the inorganic subnet, the pillars are formed by FeO6 trimers linked by vertex sharing phosphite groups, while in the cationic subnet the organic molecules act like pillars. With increasing temperature, the flexibility of the structure allows contraction due to dehydration followed by thermal expansion before reaching the thermal stability limit. The Dq and Racah parameters calculated for (C5H18N3)[Fe3(HPO3)6].3H2O are Dq = 965, B = 1080, and C = 2472 cm(-1). M?ssbauer spectroscopy confirms the trivalent oxidation state of iron cations and the crystallographic multiplicities of their sites. The ESR spectra show isotropic signals with a g-value of 2.00(1). Specific-heat measurements show a three-dimensional (lambda-type) peak at a critical temperature Tc = 32 K. The value of the entropy at saturation is 46 J/mol K, very near the expected value of 44.7 J/mol K for the iron(III) cations with S = 5/2. Magnetic measurements indicate a three-dimensional antiferromagnetic ordering below 32 K and a reorientation of spins below 15 K with an incomplete cancellation of spins due to triangular interactions inherent to the structure.  相似文献   

12.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

13.
Diruthenium tetracarboxylates monocations are utilized as building blocks for cubic 3-D network structured molecule-based magnets. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] [M = Cr (1a), Fe (2), Co (3)] were prepared in aqueous solution. Powder X-ray diffraction indicates that they have body-centered cubic structures (space group = Imm, a = 13.34, 13.30, and 13.10 A for 1a, 2, and 3, respectively), which was confirmed for 1a by Reitveld analysis of the synchrotron powder data [a = 13.3756(5) A]. [Ru(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)].xMeCN [M = Cr, x = 1.8 (1b); M = Mn, x = 3.3 (4)] were prepared from acetonitrile. The magnetic ordering of 1a (33 K), 1b (34.5 K), 2 (2.1 K), and 4 (9.6 K) was determined from the temperature dependencies of the in-phase (chi') alternating current (AC) susceptibility. The field dependence of the magnetization, M(H), at 2 K for 1a showed an unusual constricted hysteresis loop with a coercive field, H(cr), of 470 Oe while the M(H) data for 1b, 2, and 4 showed a normal hysteresis loop with a coercive field of 1670, 10, and 990 Oe, respectively. The (57)Fe M?ssbauer spectrum of 2 is consistent with the presence of low spin Fe(III) (delta = -0.05 mm/s; DeltaE = 0.33 mm/s) at room temperature, and the onset of 3-D magnetic ordering at lower temperature (<2 K). The effects of M(III) in [M(III)(CN)(6)](3-), and the large zero-field splitting (D) of diruthenium tetracarboxylates are discussed. The increasing critical temperatures T(c), with increasing S could not be accounted for by mean field models without significantly different J values for 1a, 4, and 2. By fitting the T(c) data with mean field models [H = -2JS(Ru).(S(M) - micro(B)(g(Ru)S(Ru) + g(M)S(M))H], J/k(B) are 4.46, 1.90, and 0.70 K for 1a, 4, and 2, respectively.  相似文献   

14.
Treatment of several divalent transition-metal trifluoromethanesulfonates [M(II)(OTf)2; M(II) = Mn, Co, Ni] with [NEt4][Tp*Fe(III)(CN)3] [Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate] in DMF affords three isostructural rectangular clusters of {[Tp*Fe(III)(CN)3M(II)(DMF)4]2[OTf]2} x 2DMF (M(II) = Mn, 3; Co, 4; Ni, 5) stoichiometry. Magnetic studies of 3-5 indicate that the Tp*Fe(CN)3(-) centers are highly anisotropic and exhibit antiferromagnetic (3 and 4) and ferromagnetic (5) exchange to afford S = 4, 2, and 3 spin ground states, respectively. ac susceptibility measurements suggest that 4 and 5 exhibit incipient single-molecule magnetic behavior below 2 K.  相似文献   

15.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop.  相似文献   

16.
Mn(SeO(3)).2H(2)O (1) and Fe(2)(SeO(3))(3).3H(2)O (2) have been synthesized by slow evaporation from an aqueous solution in the case of (1) and using mild hydrothermal conditions for (2). The crystal structures of both phases have been refined by the Rietveld method. The compounds crystallize in different spatial groups, the P2(1)/n monoclinic one with parameters a=6.649(1)A, b=6.542(1)A, c=10.890(1)A and beta=103.85(1) degrees being Z=4 for (1) and the R3c trigonal space group with parameters a=9.361(1)A, c=20.276(1)A and Z=6 for (2). The crystal structure of compound (1) consists of a three-dimensional framework formed by MnO(6) octahedra and (SeO(3))(2-) oxoanions with trigonal pyramidal geometry, which gives rise to Mn(2)O(10) dimers of edge-sharing octahedra. The crystal structure of phase (2) can be described as a three-dimensional framework formed by MnO(6) octahedra and (SeO(3))(2-) oxoanions with trigonal pyramidal geometry. In this phase the octahedral entities are linked along the three crystallographic axes through the selenite anions. Diffuse reflectance spectrum and luminescent measurements for (1) indicate the existence of Mn(2+) cations in a slightly distorted octahedral environment. Diffuse reflectance spectrum and M?ssbauer spectroscopy, in the paramagnetic region, for (2) show the existence of Fe(3+) cations in slightly distorted octahedral symmetry. ESR spectra of both compounds are isotropic with a g-value of 1.99(1) and 2.00(1), respectively. Magnetic measurements of both phases indicate an antiferromagnetic behavior. For phase (2), both, the ESR and magnetic measurements suggest a spin change from Fe(3+) (S=5/2) to Fe(2+) (S=2) at low temperatures.  相似文献   

17.
The new heterodinuclear mixed valence complex [Fe(III)Mn(II)(BPBPMP)(OAc)(2)]ClO(4) (1) with the unsymmetrical N(5)O(2) donor ligand 2-bis[((2-pyridylmethyl)-aminomethyl)-6-((2-hydroxybenzyl)(2-pyridylmethyl))-aminomethyl]-4-methylphenol (H(2)BPBPMP) has been synthesized and characterized. Compound 1 crystallizes in the monoclinic system, space group P2(1)/c, and has an Fe(III)Mn(II)(mu-phenoxo)-bis(mu-carboxylato) core. Two quasireversible electron transfers at -870 and +440 mV versus Fc/Fc(+) corresponding to the Fe(II)Mn(II)/Fe(III)Mn(II) and Fe(III)Mn(II)/Fe(III)Mn(III) couples, respectively, appear in the cyclic voltammogram. The dinuclear Fe(III)Mn(II) center has weakly antiferromagnetic coupling with J = -6.8 cm(-1) and g = 1.93. The (57)Fe M?ssbauer spectrum exhibits a single doublet, delta = 0.48 mm s(-1) and DeltaE(Q) = 1.04 mm s(-1) for the high spin Fe(III) ion. Phosphatase-like activity at pH 6.7 with the substrate 2,4-bis(dinitrophenyl)phosphate reveals saturation kinetics with the following Michaelis-Menten constants: K(m) = 2.103 mM, V(max) = 1.803 x 10(-5) mM s(-1), and k(cat) = 4.51 x 10(-4) s(-1).  相似文献   

18.
Bis-dioxolene bridged dinuclear metal complexes of general formula M2(CTH)2(diox-diox)(PF6)n (n = 2, 3; M = Co(III), Cr(III); CTH = tetraazamacrocycle) have been synthesized using the bis-bidentate ligand 5,5'-di-tert-butyl-3,3',4,4'-tetrahydroxybiphenyl. These complexes were characterized by means of ESR, UV-vis, temperature dependent magnetic susceptibility, and cyclic voltammetry. Our results unambiguously suggest that the tripositive dimetal cations can be described as containing a fully delocalized bis-dioxolene trinegative radical ligand (Cat-Sq) bridging two tripositive metal cations. In this frame the sextet electronic ground state characterizes the Cr2(CTH)2(Cat-SQ)3+ as a result of the antiferromagnetic coupling of the radical bridging ligand with the two equivalent paramagnetic metal centers. The electronic and geometrical structure and the magnetic properties of Cat-Sq and of its complexes have been studied with density functional theory.  相似文献   

19.
The synthesis and magnetic properties of the oxalate-based molecular soluble magnets with general formula [K(18-crown-6)] 3[M (II) 3(H 2O) 4{M (III)(ox) 3} 3] (M (III) = Cr, Fe; M (II) = Mn, Fe, Ni, Co, Cu; ox = C 2O 4 (2-)) are here described. All the reported compounds are isostructural and built up by 2D bimetallic networks formed by alternating M (III) and M (II) ions connected through oxalate anions. Whereas the Cr (III)M (II) derivatives behave as ferromagnets with critical temperatures up to 8 K, the Fe (III)M (II) present ferri- or weak ferromagnetic ordering up to 26 K.  相似文献   

20.
The synthesis, crystal structure, and magnetic properties of two trinuclear oxo-centered carboxylate complexes are reported and discussed: [Cr3(mu3-O)(mu2-PhCOO)6(H2O)3]NO3.4H2O.2CH3OH (1) and [Cr3(mu3-O)(mu2-PhCOO)2(mu2-OCH2CH3)2(bpy)2(NCS)3] (2). For both complexes the crystal system is monoclinic, with space group C2/c for 1 and P1/n for 2. The structure of complex 1 consists of discrete trinuclear cations, associated NO3- anions, and lattice methanol and water molecules. The structure of complex 2 is built only by neutral discrete trinuclear entities. The most important feature of 2 is the unusual skeleton of the [Cr3O] core due to the lack of peripheral bridging ligands along one side of the triangular core, which is unique among the structurally characterized (mu3-oxo)trichromium(III) complexes. Magnetic measurements were performed in the 2-300 K temperature range. For complex 1, in the high-temperature region (T > 8 K), experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J12S1S2 - 2J13S1S3 - 2J23S2S3 (J12 = J13 = J23) with Jij = -10.1 cm(-1), g = 1.97, and TIP = 550 x 10(-6) emu mol(-1). The antisymmetric exchange interaction plays an important role in the magnetic behavior of the system, so in order to fit the experimental magnetic data at low temperature, a new magnetic model was used where this kind of interaction was also considered. The resulting fitting parameters are the following: Gzz = 0.25 cm(-1), delta = 2.5 cm(-1), and TIP = 550 x 10(-6) emu mol(-1). For complex 2, the experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J1(S1S2 + S1S3) - 2J2(S2S3) with J1 = -7.44 cm(-1), J2 = -51.98 cm(-1), and g = 1.99. The magnetization data allows us to deduce the ground term of S = 1/2, characteristic of equilateral triangular chromium(III) for complex 1 and S = 3/2 for complex 2, which is confirmed by EPR measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号