首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liu  S.  Pan  F.  Wang  Z.  Wang  F.  Rong  L.  Shang  P.  Xiao  W. 《Laser Physics》2011,21(4):740-745
The dynamic analysis of biological living samples is one of the particular interests in life sciences. An improved digital holographic microscope for long-term quantitative phase-contrast imaging of living cells is presented in this paper. The optical configuration is optimized in the form of a free-space-fiber hybrid system which promotes the flexibility of imaging in complex or semi-enclosed experimental environment. Aberrations compensation is implemented taking into account the additional phase aberration induced by liquid culture medium in long-term observation. The proposed approach is applied to investigate living samples of MC3T3-E1 and MLO-Y4 cells. The experimental results demonstrate its availability in the analysis of cellular changes.  相似文献   

2.
Combining the concept of lateral shear interferometry (LSI) within a digital holography microscope, we demonstrate that it is possible to obtain quantitative optical phase measurement in microscopy by a new single-image-processing procedure. Numerical lateral shear of the reconstructed wavefront in the image plane makes it possible to retrieve the derivative of the wavefront and remove the defocus aberration term introduced by the microscope objective. The method is tested to investigate a silicon structure and a mouse cell line.  相似文献   

3.
Quan  Xiangyu  Nitta  Kouichi  Matoba  Osamu  Xia  Peng  Awatsuji  Yasuhiro 《Optical Review》2015,22(2):349-353
Optical Review - Hybrid digital holographic microscopy that combines fluorescence microscopy and digital holographic microscopy into a single system for biological applications is proposed. In the...  相似文献   

4.
We present an experimental setup useful for complex amplitude evaluation and phase image quantification of three-dimensional (3-D) samples in digital holographic microscopy (DHM). It is based on a common-path interferometric configuration performed by dividing the input plane in two contiguous regions and by placing a translation grating near to the Fourier plane. Then, complex amplitude distribution of the sample under test is recovered with phase-shifting standard method obtained by moving the grating using a linear motion stage. Some experimental results of an USAF resolution test are presented for different numerical aperture (NA) microscope lenses. In a second part, the proposed setup is tested under superresolution purposes. Based on the object’s spectrum shift produced by off-axis illumination, we use time multiplexing to generate a synthetic aperture enlargement that improves the final image resolution. Experimental results for the case of a biosample (human red blood cells) and a commercial low NA microscope lens validates the suggested superresolution approach.  相似文献   

5.
We have previously developed a new way for nonscanning second-harmonic generation (SHG) microscopy [Opt. Lett. 34, 2450 (2009)]. Based on digital holography, this technique captures, in single-shot hologram acquisition, both the amplitude and the phase of a coherent SHG radiation, which makes possible second harmonic phase microscopy. In this work, we present holographic SHG phase microscopy of a label-free biological tissue and discuss its added value to SHG microscopy.  相似文献   

6.
We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.  相似文献   

7.
We present a numerical technique for extended focused imaging and three-dimensional analysis of a microparticle field observed in a digital holographic microscope working in transmission. The three-dimensional localization of objects is performed using the local focus plane determination method based on the integrated amplitude modulus. We apply the refocusing criterion locally for each pixel, using small overlapping windows, to obtain the depth map and a synthetic image in which all objects are refocused independent from their refocusing distance. A successful application of this technique in the analysis of the microgravity particle flow experiment is presented.  相似文献   

8.
We describe a method for en face phase-contrast imaging of cells with a fiber-based differential phase-contrast optical coherence microscopy system. Recorded en face images are quantitative phase-contrast maps of cells due to spatial variation of the refractive index and (or) thickness of various cellular components. Quantitative phase-contrast images of human epithelial cheek cells obtained with the fiber-based differential phase-contrast optical coherence microscopy system are presented.  相似文献   

9.
The large depth of field of digital in-line holographic microscopy (DIHM) with numerical reconstruction provides an ideal tool for the study of microfluidic phenomena. As indicators of the flow patterns we use latex microspheres and also red blood cells whose three-dimensional trajectories and velocities can easily be measured as a function of time with subsecond and micron resolution. We demonstrate the efficiency of DIHM by showing 3-D views of the flow patterns around big spheres in various geometric arrangements.  相似文献   

10.
Light-induced refractive index change in photopolymer is quantified by a digital holographic microscope. The refractive index change is induced as the dark reaction which proceeds inside the photopolymer after a writing beam is stopped. Time-lapse phase distribution across the photopolymer is measured by the off-axis digital holographic microscope which enables us to retrieve the 2-D phase map from a single hologram. It is found that the initial phase profile does not coincide with the illumination intensity distribution. This observation suggests that the rate of the refractive index change in dark reaction is not proportional to the illumination intensity in case the exposure energy becomes high.  相似文献   

11.
Ultrasound intensity microscopy was developed for in vivo imaging. This paper describes the preliminary results obtained using 300 MHz ultrasound intensity microscopy for in vitro characterization of cell cultures. The novelty of the approach lies in the fact that it allows remote, non-contact and disturbance-free imaging of cultured synovial cells and the changes in the cells’ properties due to external stimulants such as transforming growth factor beta-1 (TGF-β1). The intensity imaging method has potential for extracting mechanical cell properties and monitoring the effects of drugs.Ultrasound propagates through a thin specimen such as cultured cells and is reflected at the interface between the specimen and substrate. A two-dimensional distribution of the ultrasonic intensity, which is closely related to the mechanical properties, is visualized to analyze cell organs, such as the nucleus at the central part and the cytoskeleton at the peripheral zone. After stimulation with TGF-β1, the ultrasonic intensity at the actin zone was significantly increased compared with the control.  相似文献   

12.
Fukuda  Takahito  Shinomura  Masato  Xia  Peng  Awatsuji  Yasuhiro  Nishio  Kenzo  Matoba  Osamu 《Optical Review》2017,24(2):206-211
Optical Review - We constructed a parallel-phase-shifting digital holographic microscopy (PPSDHM) system using an inverted magnification optical system, and succeeded in three-dimensional (3D)...  相似文献   

13.
We present a deep learning approach for living cells mitosis classification based on label-free quantitative phase imaging with transport of intensity equation methods. In the approach, we applied a pretrained deep convolutional neural network using transfer learning for binary classification of mitosis and non-mitosis. As a validation, we demonstrated the performances of the network trained by phase images and intensity images, respectively. The convolutional neural network trained by phase images achieved an average accuracy of 98.9% on the validation data, which outperforms the average accuracy 89.6% obtained by the network trained by intensity images. We believe that the quantitative phase microscopy in combination with deep learning enables researchers to predict the mitotic status of living cells noninvasively and efficiently.  相似文献   

14.
We present here a three-dimensional evaluation of the amplitude point-spread function (APSF) of a microscope objective (MO), based on a single holographic acquisition of its pupil wavefront. The aberration function is extracted from this pupil measurements and then inserted in a scalar model of diffraction, allowing one to calculate the distribution of the complex wavefront propagated around the focal point. The accuracy of the results is compared with a direct measurement of the APSF with a second holographic system located in the image plane of the MO. Measurements on a 100 x 1.3 NA MO are presented.  相似文献   

15.
Digital holographic microscopy is used to numerically refocus a recorded hologram at an arbitrary axial distance. However, as a straightforward property of coherent light fields, image reconstruction on an arbitrary tilted plane could be directly obtained by a rotation in k-space. We demonstrate that this property allows the real-time microscopic inspection of particle distribution over three mutually orthogonal planes at the same time. As a straightforward application we use the proposed technique for real-time monitoring of fluid flow over the three cross sections of a microfluidic channel.  相似文献   

16.
Optical coherence microscopy (OCM) is capable of imaging the backscattering potential of a sample with high transversal and axial resolution. We report on a combination of OCM with a differential phase-contrast technique that permits imaging of the subwavelength optical path differences that occur between a narrow beam probing a sample and its surrounding. This technique allows small transversal refractive-index variations close to a selected interface to be seen. We report on the method and present first images of a test sample and a single cell layer. The cells act as phase objects; imaging the phase properties improves the contrast compared with that of intensity images.  相似文献   

17.
Due to the large coherence length of laser light, optical path length (OPL) resolution in laser based digital holographic microscopy suffers from parasitic interferences caused by multiple reflections within the experimental setup. Use of partially coherent light reduces this drawback but requires precise and stable matching of object and reference arm’s OPLs and limits the spatial frequency of the interference pattern in off-axis holography. Here, we investigate if the noise properties of spectrally broadened light sources can be generated numerically. Therefore, holograms are coherently captured at different laser wavelengths and the corresponding reconstructed wave fields are numerically superimposed utilizing variable weightings. Gaussian and rectangular spectral shapes of the so synthesized field are analyzed with respect to the resulting noise level, which is quantified in OPL distributions of a reflective test target. Utilizing a Gaussian weighting, the noise level is found to be similar to the one obtained with the partially coherent light of a superluminescent diode. With a rectangular shaped synthesized spectrum, noise is reduced more efficient than with a Gaussian one. The applicability of the method in label-free cell analysis is demonstrated by quantitative phase contrast images obtained from living cancer cells.  相似文献   

18.
In vacuum high-intensity lasers can cause photon–photon interaction via the process of virtual vacuum polarization which may be measured by the phase velocity shift of photons across intense fields. In the optical frequency domain, the photon–photon interaction is polarization-mediated described by the Euler–Heisenberg effective action. This theory predicts the vacuum birefringence or polarization dependence of the phase velocity shift arising from nonlinear properties in quantum electrodynamics (QED). We suggest a method to measure the vacuum birefringence under intense optical laser fields based on the absolute phase velocity shift by phase-contrast Fourier imaging. The method may serve for observing effects even beyond the QED vacuum polarization.  相似文献   

19.
Shin D  Daneshpanah M  Anand A  Javidi B 《Optics letters》2010,35(23):4066-4068
Optofluidic devices offer flexibility for a variety of tasks involving biological specimen. We propose a system for three-dimensional (3D) sensing and identification of biological micro-organisms. This system consists of a microfluidic device along with a digital holographic microscope and relevant statistical recognition algorithms. The microfluidic channel is used to house the micro-organisms, while the holographic microscope and a CCD camera record their digital holograms. The holograms can be computationally reconstructed in 3D using a variety of algorithms, such as the Fresnel transform. Statistical recognition algorithms are used to analyze and identify the micro-organisms from the reconstructed wavefront. Experimental results are presented. Because of computational reconstruction of wavefronts in holographic imaging, this technique offers unique advantages that allow one to image micro-organisms within a deep channel while removing the inherent microfluidic-induced aberration through interferometery.  相似文献   

20.
A non-invasive detection method for the status analysis of cell culture is presented based on digital holography technology.Lensless Fourier transform digital holography (LFTDH) configuration is developed for living cell imaging without prestaining.Complex amplitude information is reconstructed by a single inverse fast Fourier transform,and the phase aberration is corrected through the two-step phase subtraction method.The image segmentation is then applied to the automatic evaluation of confiuency.Finally,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号