首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superposition state which exhibits holes in its photon-number distribution, while the atomic field is initially in a Fock state, it is found that there is energy exchange between photons and atoms. For the input and output states, the photons and atoms may exhibit the sub-Poissonian distribution. The input and output laser fields may exhibit quadrature squeezing, but for the atomic field, only the output state exhibits quadrature squeezing. It is shown that there exists the violation of the Cauchy-Schwartz inequality, which means that the correlation between photons and atoms is nonclassical.``  相似文献   

2.
A self-consistent quantum theory is developed for an atomic laser utilizing cooling of atoms in a trap by the method of stimulated evaporation. The model describes the pumping and extraction of the atomic field from a trap upon its interaction with independent atomic reservoirs. The stimulated collisions between atoms in the trap, which produce a Bose condensate in the lower state of the trap, are considered. The interaction of atoms with a phonon field causes spontaneous transitions between the discrete states of the trap. Calculations performed for the three-and four-level models of the trap showed the possibility of generation of a strongly squeezed sub-Poisson Bose condensate.  相似文献   

3.
We present a two-level atomic Bose–Einstein condensate (BEC) with dispersion, which is coupled to a high-finesse optical cavity. We call this model the extended Jaynes–Cummings–Dicke (JC-Dicke) model and introduce an effective Hamiltonian for this system. From the direct product of Heisenberg–Weyl (HW) coherent states for the field and U(2) coherent states for the matter, we obtain the potential energy surface of the system. Within the framework of the mean-field approach, we evaluate the variational energy as the expectation value of the Hamiltonian for the considered state. We investigate numerically the quantum phase transition and the Berry phase for this system. We find the influence of the atom–atom interactions on the quantum phase transition point and obtain a new phase transition occurring when the microwave amplitude changes. Furthermore, we observe that the coherent atoms not only shift the phase transition point but also affect the macroscopic excitations in the superradiant phase.  相似文献   

4.
Using the Dirac’s method, the formation of metastable molecular states at the resonance scattering of two atoms in the laser radiation field is considered. Expressions for the metastable level populations and the resonance scattering cross sections are obtained. In the case of an exact resonance with the laser radiation, the graphs for populations and resonance scattering cross sections, which have two peaks due to the Autler–Townes effect, are obtained. These results play an important role in the study of the controlled chemical reaction and for the understanding of the processes in the quantum systems of the Bose–Einstein condensate at low temperatures, as well as in the various optical processes in atomic gases.  相似文献   

5.
We show that in an atomic Bose gas near a Feshbach resonance a quantum phase transition occurs between a phase with only a molecular Bose-Einstein condensate and a phase with both an atomic and a molecular Bose-Einstein condensate. We show that the transition is characterized by an Ising order parameter. We also determine the phase diagram of the gas as a function of magnetic field and temperature: the quantum critical point extends into a line of finite temperature Ising transitions.  相似文献   

6.
Ho TL  Yip SK 《Physical review letters》2000,84(18):4031-4034
We show that the ground state of a spin-1 Bose gas with an antiferromagnetic interaction is a fragmented condensate in uniform magnetic fields. The number fluctuations in each spin component change rapidly from being enormous (order N) to exceedingly small (order 1) as the magnetization of the system increases. A fragmented condensate can be turned into a single condensate state by magnetic field gradients. The conditions for existence and method of detecting fragmented states are presented.  相似文献   

7.
8.
9.
10.
A semiclassical theory is proposed to describe the light amplification in a Bose—Einstein condensate of a dilute atomic gas observed in [1]. Atomic states with well-defined momenta are taken as a basis of wave functions to derive the Maxwell—Bloch equations for the model of a dilute gas of atoms interacting with electromagnetic field. The evolution of light intensity and populations of coherent atomic states with different recoil momenta is described by solving these equations. The solutions obtained are used to demonstrate theoretically the effects observed in [1].  相似文献   

11.
Bose–Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose–Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose–Einstein condensate. We also elaborate on the theoretical framework for atomic Bose–Einstein condensation, which includes statistical mechanics and the Gross–Pitaevskii equation. As an extension, we discuss Bose–Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck’s law in statistical mechanics. Further, a comparison is made between photon condensate and laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process.  相似文献   

12.
We investigate the stimulated Raman adiabatic passage for Bose-Einstein condensate (BEC) states which are trapped in different potential wells or two ground states of BEC in the same trap. We consider that lasers are nearly resonant with the atomic transitions. The difference of population transfer processes between BEC atoms and usual atoms is that the atomic interaction of the BEC atoms can cause some nonadiabatic effects, which may degrade the process. But with suitable detunings of laser pulses, the effects can be remedied to some extent according to different atomic interactions.  相似文献   

13.
Within the framework of quantum field theory, we find that uniform Bose atomic gases with pure gradient interactions with negative coefficient can undergo a Bardeen-Cooper-Schrieffer (BCS) condensation below a critical temperature. In the BCS condensation state, bare atoms with opposite wave vectors are bound into pairs, and unpaired bare atoms are transformed into a new kind of quasi-particle, i.e. the dressed atom. The atom-pair system is a condensate or a superfluid and the dressed-atom system is a normal fluid. At absolute zero temperature the condensate possesses a lowest negative energy. When the total interaction strength of atoms is large enough, the energy of the condensate is a monotonically increasing function of temperature and interaction strength. The critical temperature and the effective mass of dressed atoms are derived analytically. The transition from the BCS condensation state to the normal state is a first-order phase transition.  相似文献   

14.
The properties of a one-dimensional atomic Bose condensate are studied under the assumption that the condensation leads to a state of velocity-selective coherent population trapping. This state is characterized by the quantum correlation (entanglement) between the intrinsic angular momentum of an atom and its translational motion underlying nontrivial features of the condensate. The effects of weak interatomic interaction are taken into account. The steady state of above-condensate atoms corresponding to the slow decay of the state with coherent population trapping is found. The dynamic problem concerning the evolution of the system of above-condensate atoms after switching off the optical field forming the state with coherent population trapping is solved. The solution is found by the diagonalization of the Hamiltonian based on introducing the Bogoliubov quasiparticles with the unusual dispersion law.  相似文献   

15.
A scheme for the generation of two-mode atomic laser   总被引:3,自引:0,他引:3  
The quantum dynamic behavior of the system composed of V-type three-level atomic Bose-Einstein con-densate (BEC) interacting with two-mode coherent light field has been studied. The results show that the atoms of V-type three-level atomic BEC, which are excited to higher-level states under the action of light field, still keep their properties of coherent states. It demonstrates theoretically that two-mode atomic laser may be prepared by V-type three-level atomic BEC.  相似文献   

16.
We adopt the potential harmonics expansion method for anab initio solution of the many-body system in a Bose condensate containing interacting bosons. Unlike commonly adopted mean-field theories, our method is capable of handling two-body correlation properly. We disregard three- and higher-body correlations. This simplification is ideally suited to dilute Bose Einstein condensates, whose number density is required to be so small that the interparticle separation is much larger than the range of two-body interaction to avoid three- and higher-body collisions, leading to the formation of molecules and consequent instability of the condensate. In our method we can incorporate realistic finite range interactions. We calculate energies of low-lying states of a condensate containing23Na atoms and some thermodynamical properties of the condensate.  相似文献   

17.
In this, the hundredth year since Einstein first postulated the existence of photons, the successful application of wave - particle duality to matter has seen an explosion of activity in the field of atom optics and Bose - Einstein condensation (BEC). This article provides a brief introduction to atom optics, illustrated with applications taken from experiments using helium atoms in long-lived (metastable) excited states. Metastable helium atoms store the greatest amount of energy (~20 electron volts) in any atomic or molecular system. They behave like nano-hand grenades, making it easy to detect single atoms, opening up promising applications as well as fundamental studies of the quantum statistical properties of atomic systems.  相似文献   

18.
We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose-Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superposition state which exhibits holes in its photon-number distribution, while the atomic field is initially in a Fock state, it is found that there is energy exchange between photons and atoms. For the input and output states, the photons and atoms may exhibit the sub-Poissonian distribution. The input and output laser fields may exhibit quadrature squeezing, but for the atomic field, only the output state exhibits quadrature squeezing. It is shown that there exists the violation of the Cauchy-Schwartz inequality, which means that the correlation between photons and atoms is nonclassical.  相似文献   

19.
We use quantum Monte Carlo methods to compute the density profile, the nonclassical moment of inertia, and the condensate fraction of an interacting quasi-two-dimensional trapped Bose gas with up to N ~ 5 x 10(5) atoms and parameters closely related to recent experiments. We locate the Kosterlitz-Thouless temperature T(KT) and discuss intrinsic signatures of the onset of superfluidity in the density profile. Below T(KT), the condensate fraction is macroscopic even for our largest systems and decays only slowly with system size. We show that the thermal population of excited states in the transverse direction changes the two-dimensional density profile noticeably in both the normal and the superfluid phase.  相似文献   

20.
JüRG FR?HLICH  ZHOU GANG 《Pramana》2012,78(6):865-874
We discuss the transport of a tracer particle through the Bose?CEinstein condensate of a Bose gas. The particle interacts with the atoms in the Bose gas through two-body interactions. In the limiting regime where the particle is very heavy and the Bose gas is very dense, but very weakly interacting (??mean-field limit??), the dynamics of this system corresponds to classical Hamiltonian dynamics. We show that, in this limit, the particle is decelerated by emission of gapless modes into the condensate (Cerenkov radiation). For an ideal gas, the particle eventually comes to rest. In an interacting Bose gas, the particle is decelerated until its speed equals the propagation speed of the Goldstone modes of the condensate. This is a model of ??Hamiltonian friction??. It is also of interest in connection with the phenomenon of ??decoherence?? in quantum mechanics. This note is based on work we have carried out in collaboration with D Egli, I M Sigal and A Soffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号