首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph G with n vertices is said to be embeddable (in its complement) if there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))=. It is known that all trees T with n (≥2) vertices and T K1,n−1 are embeddable. We say that G is 1-embeddable if, for every edge e, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e};and that it is 2-embeddable if,for every pair e1, e2 of edges, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e1, e2}. We prove here that all trees with n (3) vertices are 1-embeddable; and that all trees T with n (4) vertices and T K1,n−1 are 2-embeddable. In a certain sense, this result is sharp.  相似文献   

2.
We prove the following theorem. Let m≥2 and q≥1 be integers and let S and T be two disjoint sets of points in the plane such that no three points of ST are on the same line, |S|=2q and |T|=mq. Then ST can be partitioned into q disjoint subsets P1,P2,…,Pq satisfying the following two conditions: (i) conv(Pi)∩conv(Pj)=φ for all 1≤i<jq, where conv(Pi) denotes the convex hull of Pi; and (ii) |PiS|=2 and |PiT|=m for all 1≤iq.  相似文献   

3.
A (finite or infinite) graph G is strongly dismantlable if its vertices can be linearly ordered x0,…, x so that, for each ordinal β < , there exists a strictly increasing finite sequence (ij)0 j n of ordinals such that i0 = β, in = and xij+1 is adjacent with xij and with all neighbors of xij in the subgraph ofG induced by {xy: β γ }. We show that the Helly number for the geodesic convexity of such a graph equals its clique number. This generalizes a result of Bandelt and Mulder (1990) for dismantlable graphs. We also get an analogous equality dealing with infinite families of convex sets.  相似文献   

4.
Length-bounded disjoint paths in planar graphs   总被引:1,自引:0,他引:1  
The following problem is considered: given: an undirected planar graph G=(V,E) embedded in , distinct pairs of vertices {r1,s1},…,{rk,sk} of G adjacent to the unbounded face, positive integers b1,…,bk and a function ; find: pairwise vertex-disjoint paths P1,…,Pk such that for each i=1,…,k, Pi is a risi-path and the sum of the l-length of all edges in Pi is at most bi. It is shown that the problem is NP-hard in the strong sense. A pseudo-polynomial-time algorithm is given for the case of k=2.  相似文献   

5.
For a positive integer k, a k-subdominating function of a graph G=(V,E) is a function f : V→{−1,1} such that ∑uNG[v]f(u)1 for at least k vertices v of G. The k-subdomination number of G, denoted by γks(G), is the minimum of ∑vVf(v) taken over all k-subdominating functions f of G. In this article, we prove a conjecture for k-subdomination on trees proposed by Cockayne and Mynhardt. We also give a lower bound for γks(G) in terms of the degree sequence of G. This generalizes some known results on the k-subdomination number γks(G), the signed domination number γs(G) and the majority domination number γmaj(G).  相似文献   

6.
In a simple digraph, a star of degree t is a union of t edges with a common tail. The k-domination number γk(G) of digraph G is the minimum number of stars of degree at most k needed to cover the vertex set. We prove that γk(T)=n/(k+1) when T is a tournament with n14k lg k vertices. This improves a result of Chen, Lu and West. We also give a short direct proof of the result of E. Szekeres and G. Szekeres that every n-vertex tournament is dominated by at most lg n−lglg n+2 vertices.  相似文献   

7.
It was proved by Dow and Simon that there are 2ω1 (as many as possible) pairwise nonhomeomorphic compact, T2, scattered spaces of height ω1 and width ω. In this paper, we prove that if is an ordinal withω1 < ω2 and θ = κξ: ξ < is a sequence of cardinals such that either κξ = ω or κξ = ω1 for every ξ < , then there are 2ω1 pairwise nonhomeomorphic compact, T2, scattered spaces whose cardinal sequence is θ.  相似文献   

8.
We have considered the problem of the weak convergence, as tends to zero, of the multiple integral processes
in the space , where fL2([0,T]n) is a given function, and {η(t)}>0 is a family of stochastic processes with absolutely continuous paths that converges weakly to the Brownian motion. In view of the known results when n2 and f(t1,…,tn)=1{t1<t2<<tn}, we cannot expect that these multiple integrals converge to the multiple Itô–Wiener integral of f, because the quadratic variations of the η are null. We have obtained the existence of the limit for any {η}, when f is given by a multimeasure, and under some conditions on {η} when f is a continuous function and when f(t1,…,tn)=f1(t1)fn(tn)1{t1<t2<<tn}, with fiL2([0,T]) for any i=1,…,n. In all these cases the limit process is the multiple Stratonovich integral of the function f.  相似文献   

9.
For a 1-dependent stationary sequence {Xn} we first show that if u satisfies p1=p1(u)=P(X1>u)0.025 and n>3 is such that 88np131, then
P{max(X1,…,Xn)u}=ν·μn+O{p13(88n(1+124np13)+561)}, n>3,
where
ν=1−p2+2p3−3p4+p12+6p22−6p1p2,μ=(1+p1p2+p3p4+2p12+3p22−5p1p2)−1
with
pk=pk(u)=P{min(X1,…,Xk)>u}, k1
and
|O(x)||x|.
From this result we deduce, for a stationary T-dependent process with a.s. continuous path {Ys}, a similar, in terms of P{max0skTYs<u}, k=1,2 formula for P{max0stYsu}, t>3T and apply this formula to the process Ys=W(s+1)−W(s), s0, where {W(s)} is the Wiener process. We then obtain numerical estimations of the above probabilities.  相似文献   

10.
A dominating set for a graph G = (V, E) is a subset of vertices VV such that for all v ε VV′ there exists some u ε V′ for which {v, u} ε E. The domination number of G is the size of its smallest dominating set(s). For a given graph G with minimum size dominating set D, let m1 (G, D) denote the number of edges that have neither endpoint in D, and let m2 (G, D) denote the number of edges that have at least one endpoint in D. We characterize the possible values that the pair (m1 (G, D), m2 (G, D)) can attain for connected graphs having a given domination number.  相似文献   

11.
Lingsheng Shi   《Discrete Mathematics》2003,270(1-3):251-265
The Ramsey number R(G1,G2,…,Gk) is the least integer p so that for any k-edge coloring of the complete graph Kp, there is a monochromatic copy of Gi of color i. In this paper, we derive upper bounds of R(G1,G2,…,Gk) for certain graphs Gi. In particular, these bounds show that R(9,9)6588 and R(10,10)23556 improving the previous best bounds of 6625 and 23854.  相似文献   

12.
Let G be a plane graph, and let χk(G) be the minimum number of colors to color the vertices of G so that every two of them which lie in the boundary of the same face of the size at most k, receive different colors. In 1966, Ore and Plummer proved that χk(G)2k for any k3. It is also known that χ3(G)4 (Appel and Haken, 1976) and χ4(G)6 (Borodin, 1984). The result in the present paper is: χ5(G)9, χ6(G)11, χ7(G)12, and χk(G)2k − 3 if k8.  相似文献   

13.
Let G be a simple graph. The size of any largest matching in G is called the matching number of G and is denoted by ν(G). Define the deficiency of G, def(G), by the equation def(G)=|V(G)|−2ν(G). A set of points X in G is called an extreme set if def(GX)=def(G)+|X|. Let c0(G) denote the number of the odd components of G. A set of points X in G is called a barrier if c0(GX)=def(G)+|X|. In this paper, we obtain the following:

(1) Let G be a simple graph containing an independent set of size i, where i2. If X is extreme in G for every independent set X of size i in G, then there exists a perfect matching in G.

(2) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is extreme in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|i, and |Γ(Y)||U|−i+m+1 for any Y U, |Y|=m (1mi−1).

(3) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is a barrier in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|=i, and |Γ(Y)|m+1 for any Y U, |Y|=m (1mi−1).  相似文献   


14.
Densest translational lattice packing of non-convex polygons   总被引:4,自引:0,他引:4  
A translational lattice packing of k polygons P1,P2,P3,…,Pk is a (non-overlapping) packing of the k polygons which is replicated without overlap at each point of a lattice i0v0+i1v1, where v0 and v1 are vectors generating the lattice and i0 and i1 range over all integers. A densest translational lattice packing is one which minimizes the area |v0×v1| of the fundamental parallelogram. An algorithm and implementation is given for densest translational lattice packing. This algorithm has useful applications in industry, particularly clothing manufacture.  相似文献   

15.
The chromatic difference sequence cds(G) of a graph G with chromatic number n is defined by cds(G) = (a(1), a(2),…, a(n)) if the sum of a(1), a(2),…, a(t) is the maximum number of vertices in an induced t-colorable subgraph of G for t = 1, 2,…, n. The Cartesian product of two graphs G and H, denoted by GH, has the vertex set V(GH = V(G) x V(H) and its edge set is given by (x1, y1)(x2, y2) ε E(GH) if either x1 = x2 and y1 y2 ε E(H) or y1 = y2 and x1x2 ε E(G).

We obtained four main results: the cds of the product of bipartite graphs, the cds of the product of graphs with cds being nondrop flat and first-drop flat, the non-increasing theorem for powers of graphs and cds of powers of circulant graphs.  相似文献   


16.
Let πi :EiM, i=1,2, be oriented, smooth vector bundles of rank k over a closed, oriented n-manifold with zero sections si :MEi. Suppose that U is an open neighborhood of s1(M) in E1 and F :UE2 a smooth embedding so that π2Fs1 :MM is homotopic to a diffeomorphism f. We show that if k>[(n+1)/2]+1 then E1 and the induced bundle f*E2 are isomorphic as oriented bundles provided that f have degree +1; the same conclusion holds if f has degree −1 except in the case where k is even and one of the bundles does not have a nowhere-zero cross-section. For n≡0(4) and [(n+1)/2]+1<kn we give examples of nonisomorphic oriented bundles E1 and E2 of rank k over a homotopy n-sphere with total spaces diffeomorphic with orientation preserved, but such that E1 and f*E2 are not isomorphic oriented bundles. We obtain similar results and counterexamples in the more difficult limiting case where k=[(n+1)/2]+1 and M is a homotopy n-sphere.  相似文献   

17.
A holey Schröder design of type h1n1h2n2hknk (HSD(h1n1h2n2hknk)) is equivalent to a frame idempotent Schröder quasigroup (FISQ(h1n1h2n2hknk)) of order n with ni missing subquasigroups (holes) of order hi, (1 i k), which are disjoint and spanning, that is, Σ1 i k nihi = n. In this paper, it is shown that an HSD(hn) exists if and only if h2n(n − 1) 0 (mod 4) with expceptions (h, n) ε {{(1,5),(1,9),(2,4)}} and the possible exception of (h, n) = (6,4).  相似文献   

18.
Jianxiang Li   《Discrete Mathematics》2003,260(1-3):217-221
Let G be a graph of order n, and let a and b be integers such that 1a<b. Let δ(G) be the minimum degree of G. Then we prove that if δ(G)(k−1)a, n(a+b)(k(a+b)−2)/b, and |NG(x1)NG(x2)NG(xk)|an/(a+b) for any independent subset {x1,x2,…,xk} of V(G), where k2, then G has an [a,b]-factor. This result is best possible in some sense.  相似文献   

19.
We prove that to every positive integer n there exists a positive integer h such that the following holds: If S is a set of h elements and ƒ a mapping of the power set of S into such that ƒ(T)T for all T , then there exists a strictly increasing sequence T1Tn of subsets of S such that one of the following three possibilities holds: (a) all sets ƒ(Ti), i= 1,…,n, are equal; (b) for all i=1,…, n, we have ƒ(Ti)=Ti; (c) Ti=ƒ(Ti+1) for all i= 1,…,n-1. This theorem generalizes theorems of the author, Rado, and Leeb. It has applications for subtrees in power sets.  相似文献   

20.
For any positive integer n and any graph G a set D of vertices of G is a distance-n dominating set, if every vertex vV(G)−D has exactly distance n to at least one vertex in D. The distance-n domination number γ=n(G) is the smallest number of vertices in any distance-n dominating set. If G is a graph of order p and each vertex in G has distance n to at least one vertex in G, then the distance-n domination number has the upper bound p/2 as Ore's upper bound on the classical domination number. In this paper, a characterization is given for graphs having distance-n domination number equal to half their order, when the diameter is greater or equal 2n−1. With this result we confirm a conjecture of Boland, Haynes, and Lawson.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号