首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Photochemical and photophysical measurements were conducted on peripheral and non-peripheral tetrakis- and octakis(4-benzyloxyphenoxy)-substituted zinc phthalocyanines (1, 2 and 3). General trends are described for photodegradation, and fluorescence quantum yields, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulphoxide (DMSO) and toluene. The fluorescence of the complexes is quenched by benzoquinone (BQ), and fluorescence quenching properties are investigated in DMSO and toluene. The effects of the solvents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (1, 2 and 3) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications.  相似文献   

3.
The synthesis and characterization of new peripherally tetra-4-benzyloxybenzoxy substituted metal-free, zinc and lead phthalocyanines are described for the first time in this study. The influence of various organic solvents and the nature of the central metal ion on the spectroscopic, photophysical and photochemical properties has been investigated. General trends are described for photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes of these compounds in different solvents. Photophysical and photochemical properties of phthalocyanine compounds are very useful for photodynamic therapy applications. Especially high singlet oxygen quantum yields are very important for Type II mechanism. The studied phthalocyanine compounds showed good singlet oxygen generation and these compounds show potential as Type II photosensitizers. The fluorescences of the studied compounds are effectively quenched by 1,4-benzoquinone in different solvents.  相似文献   

4.
The synthesis, photophysical and photochemical properties of the tetra- and octa-poly(oxyethylene)substituted zinc (II) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, triplet state and fluorescence quantum yields, and triplet and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The effects of the substituents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (3a, 5a and 6a) are also reported. The singlet oxygen quantum yields (Phi(Delta)), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.60 to 0.72. Thus, these complexes show potential as Type II photosensitizers. The fluorescence of the complexes was quenched by benzoquinone (BQ).  相似文献   

5.
An arginine‐substituted zinc phthalocyanine (ArgZnPc) capable of disaggregating at high concentrations in polar non‐aqueous solvents through concentration‐driven hydrogen bond type transformation has been prepared. The ArgZnPc was prepared through a guanidine‐meditated self‐catalytic ester hydrolysis reaction. The concentration‐driven disaggregation of ArgZnPc was confirmed by UV‐Vis absorption spectra, fluorescence emission spectra and lifetimes, and singlet oxygen quantum yield data.  相似文献   

6.
A new amide‐linked phthalocyanine‐fullerene dyad ZnPc‐C60 was synthesized and characterized. The photophysical and electrochemical properties of the ZnPc‐C60 dyad were investigated. The fluorescence spectrum and quantum yield in different solvents showed the occurrence of photoinduced electron transfer (PET) from the singlet excited ZnPc to C60, which was further confirmed by nanosecond transient absorption spectra and cyclic voltammetry data. The free energy change for charge separation (ΔGCS) was estimated to be exothermic with ?0.51 eV, which favored the formation of charge‐separation state. The PET from ZnPc to C60 in ZnPc‐C60 made the dyad exhibit stronger reverse saturable absorption performance compared with C60 and the control sample in the Z‐scan experiments, which indicated the synergistic effect of two active moieties in the dyad.  相似文献   

7.
在二氯硅酞菁轴向位置引入硝基芳基苄醚树枝配体是一种减少酞菁配合物聚集体形成,提高其光动力活性的有效方法。本文采用UV/Vis、稳态和瞬态荧光光谱法比较了1-3代硝基芳基苄醚树枝配体轴向取代硅(Ⅳ)酞菁的光物理性质。研究结果表明,随着轴向树枝配体代数的增加,Q带最大吸收峰强度增大,酞菁核荧光强度增强,荧光量子产率降低,荧光寿命增长。研究结果将为开发轴向取代硅(Ⅳ)酞菁配合物作为新型光敏剂提供重要的理论依据。  相似文献   

8.
The synthesis, photophysical and photochemical properties of the 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}oxy) and 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}thio) zinc(ii) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, (1)H and (13)C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, fluorescence and triplet excited state quantum yields, and triplet state and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). The fluorescence of the complexes was quenched by benzoquinone (BQ). The effects of the substitution on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (6, 7 and 8) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The substituted Zn(II) phthalocyanines showed high triplet and singlet oxygen quantum yields. High singlet oxygen quantum yields are very important for Type II mechanism. Thus, these complexes show potential as Type II photosensitizers.  相似文献   

9.
New covalently C60‐connected zinc phthalocyanine (ZnPc) derivatives have been synthesized by utilizing successive cycloaddition reactions of C60 with a ZnPc derivative containing a pyridazine moiety employing Komatsu’s method in reaction of C60 with phthalazine. The UV/Vis absorption spectrum of the fused conjugate ( 5 ) shows red shifts from the corresponding absorption of ZnPc derivative ( 8 ), indicating interactions between the ZnPc and C60 moieties. The DFT calculations under non‐polar medium predict that the HOMO and LUMO of 5 localize on the ZnPc moiety, whereas LUMO+1 localizes on the C60 moiety, which reasonably explain the magnetic circular dichroism (MCD) and absorption spectra in toluene. Electrochemical redox potentials of 5 in polar solvents indicate the first‐oxidation potential arises from the ZnPc moiety, whereas the first reduction potential is associated with the C60 moiety, suggesting the LUMO localizes on the C60 moiety in polar solvent. This reversal of the LUMO is supported by the ZnPc‐fluorescence quenching with a nearby C60 moiety in benzonitrile, which leads to the charge‐separation via the excited singlet state of the ZnPc moiety. In toluene on the other hand, such a ZnPc‐fluorescence quenching owing to the photoinduced charge separation is not observed as predicted by the DFT‐calculated LUMO on the ZnPc moiety.  相似文献   

10.
Hairong Li 《Tetrahedron》2009,65(17):3357-2451
The synthesis and photophysical properties of a new series of zinc(II) phthalocyanines (ZnPcs) bearing multiple hydroxy and tert-butyl groups are reported. The X-ray structures of two phthalonitriles and one ZnPc are presented. All hydroxy-substituted ZnPcs show low fluorescence quantum yields in DMSO and complete fluorescence quenching in aqueous solutions, but high singlet oxygen quantum yields in DMSO (0.2-0.7). Our results suggest that the tetra- and octa-hydroxy ZnPcs might find application as photosensitizers in the PDT treatment of cancer.  相似文献   

11.
The content of this work is based on the introduction of the salicylhydrazone-zinc complexes into the phthalocyanine core. The reaction of the salicylhydrazone substituted ZnPc (1) with the related zinc(II) salt in basic conditions in DMF yielded bis[bis(salicyhydrazone)phenoxy)zinc(II)] phthalocyaninato zinc(II) (5) in which two salicylhydrazone-Zn complexes are linked through oxygen bridges to the macrocyclic core as three-nuclear complex. The novel compound synthesized in this study was fully characterized by general spectroscopic techniques such as FT-IR, UV-vis, 1H NMR, 13C NMR, elemental analysis and mass spectroscopy. In addition, spectral, photophysical (fluorescence quantum yields), and photochemical (generation of singlet oxygen and photo stability under light irradiation) properties of newly synthesized phthalocyanine (5) and the starting Pcs molecules used to obtain this molecule were investigated in DMSO solutions, comparatively.  相似文献   

12.
The synthesis and characterization of new peripherally and non-peripherally tetra-substituted metal-free and zinc(II) phthalocyanines with 2-, 3- and 4-phenyloxyacetic acid functionalities are described for the first time in this study. The new compounds have been characterized by elemental analysis, FT-IR, UV-Vis, MALDI-TOF and 1H-NMR spectra. Photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes of these compounds are studied in dimethylformamide (DMF). The influence of the substituent position on the phthalocyanine framework (non-peripherally or peripherally), central metal ion (metal-free or zinc) and the position of the COOH group (2-, 3- or 4-position on the phenyloxyacetic acid) on the spectroscopic, photophysical and photochemical properties have been investigated. Non-peripherally zinc(II) phthalocyanines (1b and 2b) and peripherally zinc(II) phthalocyanine (4b) gave good singlet oxygen quantum yields (ΦΔ) (0.37, 0.39 and 0.38, respectively) which indicate the potential of the complexes as photosensitizers in applications of PDT.  相似文献   

13.
Unsubstituted zinc phthalocyanine (ZnPc), 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]-phthalocyanine (ZnTPPcQ) and Zn tetrasulfo phthalocyanine (ZnTSPc) were non-covalently (electrostatic and/or π–π interaction) attached to graphene quantum dots (GQDs) to form GQDs-Pc nanoconjugates. Relative to Pcs alone, the presence of GQDs improved the triplet quantum yields with the following values: GQDs-ZnPc (0.73), GQDs-ZnTPPcQ (0.76) and GQDs-ZnTSPc (0.67). Respective Förster resonance energy transfer (FRET) efficiencies were calculated to be 0.81, 0.80 and 0.28. However, singlet oxygen generating abilities of the as-synthesized nanoconjugates were relatively low due to the screening effect of GQDs and quenching in water. This study shows that, the type of Pc, loading and solvent used are among the vital properties to consider when constructing GQD-nanoconjugate systems with optimal triplet quantum yield properties and investigation of their physicochemical properties.  相似文献   

14.
The local electronic structures of crystalline and amorphous films of zinc phthalocyanine (ZnPc) and metal-free phthalocyanine (H(2)Pc) have been studied by soft x-ray emission spectroscopy (XES). We found a clear crystalline structure dependence of the elastic-peak shape in the resonant XES spectra. The elastic peaks of both ZnPc and H(2)Pc are found to show an asymmetric shape due to resonant inelastic x-ray scattering (RIXS) at the nitrogen sites for the α-crystalline films, but not for the amorphous films. The observed RIXS feature is ascribed to the charge transfer excitation due to the Raman-active intermolecular interaction, which dominates the excited-electron dynamics in α-crystalline phthalocyanine films.  相似文献   

15.
The absorption, emission and excitation spectra of ZnPc and H(2)Pc trapped in Ne, N(2), Ar, Kr and Xe matrices have been recorded in the region of the Q states. A comparison of the matrix fluorescence spectra with Raman spectra recorded in KBr pellets reveals very strong similarities. This is entirely consistent with the selection rules and points to the occurrence of only fundamental vibrational transitions in the emission spectra. Based on this behaviour, the vibronic modes in emission have been assigned using results obtained recently on the ground state with large basis-set DFT calculations [Murray et al. PCCP, 12, 10406 (2010)]. Furthermore, the very strong mirror symmetry between excitation and emission has allowed these assignments to be extended to the excitation (absorption) bands. While this approach works well for ZnPc, coupling between the band origin of the S(2)(Q(Y)) state and vibrationally excited levels of S(1)(Q(X)), limits the range of its application in H(2)Pc. The Q(X)/Q(Y) state coupling is analysed from data obtained from site-selective excitation spectra, revealing pronounced matrix and site effects. From this analysis, the splitting of the Q(X) and Q(Y) states has been determined more accurately than in any previous attempts.  相似文献   

16.
The solvent viscosity dependence of the photophysical and photochemical properties of tetra(tert-butylphenoxy)phthalocyaninato zinc(II) (ZnTBPPc) is presented. The fluorescence quantum yields (ΦF) and Stern-Volmer′s constant (KSV) for ZnTBPPc fluorescence quenching by benzoquinone in all the solutions followed a semi-empirical law that depends only on the solvent viscosity. ΦF values vary between 0.08 in tetrahydrofuran (THF) and 0.14 in dimethylsulphoxide (DMSO). Triplet quantum yields (ΦT) and lifetimes (...  相似文献   

17.
A new family of light‐harvesting zinc phthalocyanine (ZnPc)–diketopyrrolopyrrole (DPP) hybrids have been synthesized and characterized. The absorption spectral measurements showed that the major absorptions of DPP (450–600 nm) are complementary to those of zinc phthalocyanine (300–400 and 600–700 nm). Therefore, the designed hybrids absorb over a broad range in the visible region. The geometric and electronic structures of the dyads were probed by initio B3LYP/6‐311G methods. The majority of the HOMOs were found to be located on the ZnPc, while the majority of the LUMOs were on the DPP units. The DPP units serve as the antenna, which upon excitation undergo efficient singlet–singlet energy transfer to the attached ZnPc units. The formed singlet ZnPc, in turn, donates its electron to the electron‐deficient DPP forming the low‐lying radical ion pairs ZnPc.+–DPP.? (energy=1.44–1.56 eV as calculated from the electrochemical measurements). The excited‐state events were confirmed by using a transient absorption technique in the picosecond–microsecond time range, as well as a time‐resolved emission technique. The rates of energy transfer from the singlet DPP to ZnPc were found to be extremely fast >1010 s?1, while the rates of electron transfer from the singlet excited state of ZnPc to DPP were found to be 3.7–6.6×109 s?1.  相似文献   

18.
Eleven silicon phthalocyanines which can be grouped into two homologous series [SiPc[OSi(CH3)2(CH2)(n)N(CH3)2]2, n = 1-6 (series 1), and SiPc[OSi(CH3)2(CH2)3N((CH2)(n)H)2]2, n = 1-6 (series 2)] as well as an analogous phthalocyanine, SiPc[OSi(CH3)2(CH2)3NH2]2, were synthesized. The ground state absorption spectra, the triplet state dynamics, and singlet oxygen quantum yields of 10 of these phthalocyanines were measured. All compounds displayed similar ground state absorption spectral properties in dimethylformamide solution with single Q band maxima at 668 +/- 2 nm and B band maxima at 352 +/- 1 nm. Photoexcitation of all compounds in the B bands generated the optical absorptions of the triplet states which decayed with lifetimes in the hundreds of microseconds region. Oxygen quenching bimolecular rate constants near 2 x 10(9) M(-1) s(-1) were measured, indicating that energy transfer to oxygen was exergonic. Singlet oxygen quantum yields, phi(delta), were measured, and those phthalocyanines in which the axial ligands are terminated by dimethylamine residues at the end of alkyl chains having four or more methylene links exhibited yields near > or = 0.35. Others gave singlet oxygen quantum yields near 0.2, and still others showed singlet oxygen yields of <0.1. The reduced singlet oxygen yields are probably caused by a charge transfer quenching of the 1pi,pi* state of the phthalocyanine by interaction with the lone pair electrons on the nitrogen atoms of the amine termini. In some cases, these can approach and interact with the electronically excited pi-framework, owing to diffusive motions of the flexible oligo-methylene tether.  相似文献   

19.
In this paper we describe conversion of light energy into electric energy in a photoelectrochemical cell containing zinc phthalocyanine (ZnPc) dyes. For all dyes investigated in liquid polyvinyl alcohol with dimethyl sulfoxide solution and located in the photoelectrochemical cell the following measurements have been done: absorption, fluorescence, photoacoustic spectra, photovoltaic spectra, kinetics of photocurrent and current–voltage characteristics. It has been shown that all dyes located in the photoelectrochemical cell are able to convert light into electric energy but with different effectiveness. The influence of substituted different peripheral groups to ZnPc core and the correlation between the molecular structure and effectiveness of solar to electric energy conversion were observed and described. The unique behavior of ZnPc substituted with fluorines was indicated.  相似文献   

20.
The non-peripherally (np-QZnPc) and peripherally (p-QZnPc) tetrakis-[7-oxo-(3-[(2-diethylaminomethyliodide)ethyl)]-4-methylcoumarin]-phthalocyaninatozinc complexes have been prepared by quaternization of non-peripherally and peripherally tetrakis[7-oxo-(3-[(2-diethylamino)ethyl)]-methylcoumarin] phthalocyaninato zinc complexes with methyliodide in dimethylsulfoxide (DMSO). The new quaternized zinc phthalocyanine complex (np-QZnPc) has been characterized by elemental analysis, MALDI-TOF, IR and UV-vis spectral data. The photophysical and photochemical properties of the peripherally and non-peripherally quaternized tetrakis-3-[(2-diethylamino)ethyl]-7-oxo-4-methylcoumarin substituted zinc phthalocyanines are reported. The effects of the position of the substituents and the aggregation of the phthalocyanine molecules on the photophysical and photochemical properties are also investigated. General trends are described for photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes for complexes np-ZnPc/p-ZnPc in DMSO and for complexes np-QZnPc/p-QZnPc in DMSO, phosphate buffered solution (PBS) and PBS+Triton-X 100 solutions. The fluorescence of the tetra-substituted quaternized zinc phthalocyanine complexes (np-QZnPc/p-QZnPc) are effectively quenched addition of 1,4-benzoquinone (BQ) and this study also presented the ionic zinc phthalocyanine complexes strongly bind to bovine serum albumin (BSA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号