首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A block copolymer of propylene oxide (PO) and ethoxyethyl glycidyl ether (EEGE), (PO)(2)(EEGE)(6)(PO)(2), that has been found to possess lower critical solution temperature properties in water in the temperature range below 20 degrees C was mixed at 1:0.1, 1:1, and 1:10 weight ratios with commercially available Pluronic (L64 or P85) block copolymers. The cooperative association of the copolymers in aqueous solution was studied by dynamic light scattering over a wide temperature range (5-60 degrees C). At lower temperatures, the systems containing either L64 or P85 behave similarly irrespective of the composition: three species corresponding to (PO)(2)(EEGE)(6)(PO)(2) unimers, Pluronic-dominated mixed micelles, and large (50-60 nm in radius) composite (PO)(2)(EEGE)(6)(PO)(2)/Pluronic aggregates were identified. At a certain temperature, which is composition-dependent, the systems phase-separate [(PO)(2)(EEGE)(6)(PO)(2)/L64 1:0.1], enter an interval of instability [(PO)(2)(EEGE)(6)(PO)(2)/L64 1:1 and 1:10], or rearrange by dissociation of the large composite particles [(PO)(2)(EEGE)(6)(PO)(2)/P85]. The presence of a Pluronic micellar peak in the relaxation time distribution at lower temperatures, the dimensions of the composite particles, and the different behavior of the systems at elevated temperatures are discussed. A possible application of the thermosensitive mixtures in delivery/release of active substances is suggested.  相似文献   

2.
Mechanochromic organic materials are a typical class of stimuli materials that has response to external physical stimuli such as shearing, grinding, and compressing etc. Organic compounds with mechanochromic characters in solid forms have attracted significant attention in the past decades due to their potential applications in sensors and memory devices. Diamond anvil cell is an emerging technology that can provide isotropic pressure in a tiny place. Thus a new stimuli method can be applied in investigating optical variation of mechanochromic materials. In this review, we focus on mechanoluminescence systems that are responsive to isotropic compression under high pressure and summarize the recent advances on organic materials studied by the diamond anvil cell.  相似文献   

3.
Two new functionalized tetraphenylethene-based dyes were synthesized, and the enhanced AIE and mechanochrmic properties were evaluated upon grinding-fuming with the transformation from crystal forms to irregular amorphous forms.  相似文献   

4.
《Tetrahedron》2019,75(25):3504-3509
Stimuli responsive luminescent materials have attracted increasing attention for their potential application in many fields. In this work, dimethylamine substituted bisbenzocoumarins amides (DBCE and DBCP) are synthesized and their optical properties are investigated. These molecules show solvatochromic properties. The orange fluorescence emission of DBCE in crystalline state is blue-shifted to yellow emission upon grinding. The orange color could be recovered by recrystallization process. Powder wide-angle X-ray diffraction and DSC experiments reveal that the transformation from crystalline states to amorphous states under external stimuli is responsible for the mechanochromic properties. This work developed a new kind of binaphthane-type luminescent materials with blue-shifted mechanochromic properties.  相似文献   

5.
A series of cholesterol-appended quinacridone (QA) derivatives 1a-1d have been synthesized,in which 1b and 1c could form stable organogels in a wide range of organic solvents upon ultrasound irradiation.Field emission scanning electronic microscope (FESEM) and transmission electron microscopy (TEM) of xerogels or precipitates indicated that 1b and 1c formed 1D fibrous nanostructure,while 1a assembled into 3D flower-like microstructures.The ultrasound-induced organogel process was characterized by kinetic UV...  相似文献   

6.
7.
《先进技术聚合物》2018,29(1):528-540
Two series (random and block) poly(glycolide‐co‐ε‐caprolactone) macrodiols with various glycolide to ε‐caprolactone ratios (50/50 and 30/70, R‐PG50C, R‐PG30C, B‐PG50C, and B‐PG30C) were synthesized. Next, segmented polyurethanes (PUs) were synthesized based on the synthesized macrodiols, 1,6‐hexamethylene diisocyanate and 1,4‐butanediol (PU‐R30, PU‐R50, PU‐B30, and PU‐B50). Effect of glycolide (G) and ε‐caprolactone (C) monomers arrangement (random or block) on the PUs properties were investigated via FTIR, 1H NMR, DSC, TGA, DMA, SEM, and mechanical tests. All PUs illustrated Tg (−33°C to −48°C) and Tm (102°C to 139°C) corresponding to the soft and the hard segments, respectively. Polymers based on block macrodiols also showed Tm related to the soft segments. While PUs underwent a two‐step thermal degradation, the PUs based on block macrodiols indicated higher degradation temperature. Dynamic mechanical analysis results evidenced development of a well‐defined microphase separated structure in PU‐R30. Contact angle (about 70°‐80°) and water uptake (around 20% after 24 hours) of the PU films are close to those suitable for tissue engineering materials. The PU based on R‐PG30C (PU‐R30) exhibited the highest tensile strength (2.87 MPa) followed by PU‐B50 and PU‐R50. Over a 63‐day in vitro degradation study in phosphate buffered saline, the PUs showed variable weight loss (up to 40%) depending on their soft segments composition and arrangement. Also, the PUs showed no cytotoxicity. Thus, these PUs with tunable biodegradation rate and mechanical properties are suitable candidates for tissue engineering.  相似文献   

8.
The phase behavior, including glass, devitrification, solid crystal melting, and liquid boiling transitions, and physicochemical properties, including density, refractive index, viscosity, conductivity, and air-liquid surface tension, of a series of 25 protic ionic liquids and protic fused salts are presented along with structure-property comparisons. The protic fused salts were mostly liquid at room temperature, and many exhibited a glass transition occurring at low temperatures between -114 and -44 degrees C, and high fragility, with many having low viscosities, down to as low as 17 mPa.s at 25 degrees C, and ionic conductivities up to 43.8 S/cm at 25 degrees C. These protic solvents are easily prepared through the stoichiometric combination of a primary amine and Br?nsted acid. They have poor ionic behavior when compared to the far more studied aprotic ionic liquids. However, some of the other physicochemical properties possessed by these solvents are highly promising and it is anticipated that these, or analogous protic solvents, will find applications beyond those already identified for aprotic ionic liquids. This series of protic fused salts was employed to determine the effect of structural changes on the physicochemical properties, including the effect of hydroxyl groups, increasing alkyl chain lengths, branching, and the differences between inorganic and organic anions. It was found that simple structural modifications provide a mechanism to manipulate, over a wide range, the temperature at which phase transitions occur and to specifically tailor physicochemical properties for potential end-use applications.  相似文献   

9.
[reaction: see text] Naphthopyran derivatives with aminoxyl substituents (4a,b) gave the corresponding open-formed isomers (5a,b) by irradiation, which could be changed back to the starting closed-formed naphthopyrans by the treatment with SiO(2) as a catalyst. The tuning of intermolecular magnetic interactions between the isomer couples was found to be possible in these reversible systems.  相似文献   

10.
Ma R  Shi L 《Macromolecular bioscience》2010,10(12):1397-1405
This article describes a novel type of polymeric micelles with tunable channels (PMTC), which are usually composed of a common core and a mixed shell of two different kinds of polymer chains with at least one of them being stimuli-responsive. Phase separation of the mixed shell upon stimuli results in channels between the micelle core and the outer milieu for controlling mass exchange. Channel-modulated drug release and catalysis based on PMTC are discussed. The PMTC have peculiar merits including facile manipulation of drug release rate and catalytic velocity, remarkable restraint of burst drug release, and efficient prevention of degradation of the micelle core due to their unique structure. Finally, prospects and challenges of PMTC are reviewed.  相似文献   

11.
Zhang X  Wang JY  Ni J  Zhang LY  Chen ZN 《Inorganic chemistry》2012,51(10):5569-5579
Planar platinum(II) complex Pt(Me(3)SiC≡CbpyC≡CSiMe(3))(C≡CC(6)H(4)CF(3)-4)(2) (6) with 5,5'-bis(trimethylsilylethynyl)-2,2'-bipyridine and 4-trifluoromethylphenylacetylide exhibits remarkable luminescence vapochromic and mechanochromic properties and a thermo-triggered luminescence change. Solid-state 6 is selectively sensitive to vapors of oxygen-containing volatile compounds such as tetrahydrofuran (THF), dioxane, and tetrahydropyrane (THP) with phosphorescence vapochromic response red shifts from 561 and 608 nm to 698 nm (THF), 689 nm (dioxane), and 715 nm (THP), respectively. Upon being mechanically ground, desolvated 6, 6·CH(2)Cl(2), and 6·(1)/(2)CH(2)ClCH(2)Cl exhibit significant mechanoluminescence red shifts from 561 and 608 nm to 730 nm, while vapochromic crystalline species 6·THF, 6·dioxane, or 6·THP affords a mechanoluminescence blue shift from 698 nm (THF), 689 nm (dioxane), or 715 nm (THP) to 645 nm, respectively. When the compounds are heated, a thermo-triggered luminescence change occurs, in which bright yellow luminescence at 561 and 608 nm turns to red luminescence at 667 nm with a drastic red shift. The multi-stimulus-responsive luminescence switches have been monitored by the changes in emission spectra and X-ray diffraction patterns. Both X-ray crystallographic and density functional theory studies suggest that the variation in the intermolecular Pt-Pt interaction is the key factor in inducing an intriguing luminescence switch.  相似文献   

12.
Providing catechol‐end functionality to controlled structure lower critical solution temperature (LCST) copolymers is attractive, given the versatility of catechol chemistry for tethering to nanostructures. Controlled polymer chain lengths with catechol RAFT end groups are of interest to provide tunable LCST behavior to nanoparticles, although these polymerizations are relatively unexplored. Herein, the reactivity ratios for the RAFT copolymerization of N,N‐dimethylacrylamide (DMAm) and N‐isopropylacrylamide (NIPAM) pairs based on catechol‐end RAFT agents using an in situ NMR technique were first determined. Several catechol‐end poly(DMAm‐co‐NIPAM) samples were then prepared using the RAFT agent to provide copolymer. The reactivity ratios for the DMAm‐NIPAM pair were rDMAm = 1.28–1.31 and rNIPAM = 0.48–0.51. All the poly(DMAm‐co‐NIPAM) samples were found to have Mn values ≤ 26 kDa and Ð < 1.08 with LCST values ranging from 31 to 92°C, while maintaining a short range of glass transition temperature (Tg = 118–137°C). The difference in LCST values for the catechol functionalized poly(DMAm‐co‐NIPAM) based on 0.5 wt% aqueous buffered solutions at pH 5.5 and 8.5 was found to be <3.0°C. These conditions are suitable for subsequent catechol‐induced coordination and nucleophilic addition chemistry for covalent and noncovalent linkages during subsequent post‐modification. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4062–4070  相似文献   

13.
The design and preparation of new polyester dendrimer, poly(ethylene oxide) hybrid systems for drug delivery and related therapeutic applications, are described. These systems consist of two covalently attached polyester dendrons, where one dendron provides multiple functional handles for the attachment of therapeutically active moieties, while the other is used for attachment of solubilizing poly(ethylene oxide) chains. By varying the generation of the dendrons and the mass of the poly(ethylene oxide) chains, the molecular weight, architecture, and drug loading can be readily controlled. The "bow-tie" shaped dendritic scaffold was synthesized using both convergent and divergent methods, with orthogonal protecting groups on the periphery of the two dendrons. Poly(ethylene oxide) was then attached to the periphery of one dendron using an efficient coupling procedure. A small library of eight carriers with molecular weights ranging from about 20 kDa to 160 kDa were prepared and characterized by various techniques, confirming their well-defined structures.  相似文献   

14.
This work presents a systematic study of three closely related Schiff bases NpSB, AnSB, and PySB for their potential aggregation-induced enhanced emission, gelation, and mechanochromic properties. While aggregation-induced enhanced emission was observed in case of AnSB and PySB due to the suppression of photoinduced electron transfer; PySB also formed a stable gel in DMF?water. Out of three Schiff bases, PySB exhibited reversible mechanochromism. Importantly, on applying pressure or a mechanical force, PySB changed its color from yellow to bright orange under the visible light while its emission wavelength shifted from 580 to 602 nm. More importantly, mechanical-force-induced changes were reversible after fuming with the vapors of CH2Cl2 or by heating at 100 °C. The mechanochromism of PySB was studied by a combination of powder X-ray diffraction, scanning electron microscope, differential scanning calorimetry, density functional theory, and nuclear magnetic resonance spectral studies. These studies concluded that the change in color and emission profile was due to change in the molecular packing of PySB after applying the pressure or mechanical force. The slippage of pyrene rings and the conversion of intramolecular H-bonding to intermolecular H-bonding resulted in the alteration of solid-state packing of PySB which was responsible for the mechanochromism. A noteworthy feature of the reversible mechanochromism of PySB was the reversible morphological changes as substantiated by the scanning electron microscope and powder X-ray diffraction studies. PySB was shown to illustrate noteworthy anti-counterfeiting and pressure-induced applications.  相似文献   

15.
The polyphosphazene backbone provides a versatile platform to explore numerous synthesis and structure–property relationships for many technological applications. In this study, a new class of polyphosphazene semiconducting materials was synthesized via macromolecular substitution, which integrates a  PN backbone with thiophene-based side groups. The synthesized thiophene-based polymers were subjected to chemical oxidation (oxidative coupling) to optimize their optoelectronic properties through side-chain chemistry. Both the spectroscopic and electronic analyses revealed that optical and electronic properties, as well as glass transition temperatures could be modulated by chemical oxidation of the polymers. The suitability of the polymers as potential semiconductors was further evaluated using their steady-state fluorescence quenching behavior in the presence of four different dopants (PC70BM, PC60BM, F4TCNQ, and TCNQ). It was found that the addition of dopant as a quencher to the polymer solutions does not form a complex in the ground state, and its excited state shows an efficient decrease in fluorescence intensity without altering the shape and peak position of the fluorescence band. The overall results demonstrate that the utilization of chemical oxidation via side-chain chemistry of polyphosphazenes offers an adaptable toolbox that can be used to make new and potentially useful polymeric semiconductors for applications in organic electronics.  相似文献   

16.
The merging of molecular beam methods with those of accelerator physics has yielded new tools to manipulate the motion of molecules. Over the last few years, decelerators, lenses, bunchers, traps, and storage rings for neutral molecules have been demonstrated. Molecular beams with a tunable velocity and with a tunable width of the velocity distribution can now be produced, and are expected to become a valuable tool in a variety of physical chemistry and chemical physics experiments. Here we present a compact molecular beam machine, capable of producing 3D spatially focused packets of state-selected accelerated or decelerated molecules.  相似文献   

17.
A photochromic naphthopyran derivative was embedded in sol-gel prepared thin ormosil films. The resulting samples show high transparency and exhibit a strong red colouration upon irradiation with UV light. The photostability of the photochromic molecules is strongly related to the nature of the embedding ormosil matrix. The introduction of organic functional groups into the inner pore surface of the matrix allows tailoring the chemical environment where the dye molecules will be allocated, in terms of the effectiveness of the interaction between the photochromic molecules and the Si-OH groups on the surface of the pores, affecting the stability of the molecules upon prolonged exposition to UV light. The photostability of the molecules was increased in matrices functionalized with larger organic groups, or with larger amount of modifying groups. In this way the photodegradation of the photochromic molecules could be reduced by a factor of 5, as compared with the photodegradation of the molecules in unfunctionalized silica matrix.  相似文献   

18.
Novel, highly coloured benzopentalenonaphthalenones result from a cascade process initiated by the thermally-induced ring-opening of diarylmethanol substituted 2H-naphtho[1,2-b]pyrans in the presence of acid.  相似文献   

19.
A series of liquid crystalline copolyesters (LCPs) with different concentrations of a photocrosslinking moiety have been synthesized by random polycondensation with 4,4′‐bis(6‐hydroxyhexyloxy)biphenyl, 2‐phenylsuccinic acid, and 4‐(6‐hydroxyhexyloxy)cinnamic acid (6HCA). Multifunctional monodomain liquid crystal networks (LCNs) with considerable and tunable actuation behavior are obtained by postphotocrosslinking. The influence of the photocrosslinking moiety on the phase transition behavior of the LCP and actuation behavior of the LCN has been investigated. The results suggest that incorporating 6HCA suppresses the smectic phase of the LCP and decreases the nematic‐isotropic phase transition temperature. Moreover, the starting actuation temperature of the LCN decreases from 55 to 40 °C as the 6HCA reached 50%. In addition, the actuation force and storage modulus of the LCN actuators are enhanced by incorporating a high concentration of 6HCA. A 1.64 MPa contractile force can be achieved, and it can lift burdens 1300 times heavier than its weight when 50% 6HCA is incorporated into the LCP. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 904–911  相似文献   

20.
A facile route to generate cyclic peptide nanotubes with tunable interiors is presented. By incorporating 3-amino-2-methylbenzoic acid in the D,L-alternating primary sequence of a cyclic peptide, a functional group can be presented in the interior of the nanotubes without compromising the formation of high aspect ratio nanotubes. The new design of such a cyclic peptide also enables one to modulate the nanotube growth process to be compatible with the polymer processing window without compromising the formation of high aspect ratio nanotubes, thus opening a viable approach toward molecularly defined porous membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号