首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Herein, we report the 1,2-dialkylation of simple feedstock acrylates for the synthesis of valuable tertiary carboxylic acids by merging Giese-type radical addition with an Ireland–Claisen rearrangement. Key to success is the utilization of the reductive radical-polar crossover concept under photocatalytic reaction conditions to force the [3,3]-sigmatropic rearrangement after alkyl radical addition to allyl acrylates. Using readily available alkyl boronic acids as radical progenitors, this redox-neutral, transition-metal-free protocol allows the mild formation of two C(sp3)–C(sp3) bonds, thus providing rapid access to complex tertiary carboxylic acids in a single step. Moreover, this strategy enables the efficient synthesis of highly attractive α,α-dialkylated γ-amino butyric acids (GABAs) when α-silyl amines are used as radical precursors – a structural motif that was still inaccessible in related transformations. Depending on the nature of the radical precursors and their inherent oxidation potentials, either a photoredox-induced radical chain or a solely photoredox mechanism is proposed to be operative.

A photocatalytic 1,2-dialkylation of α-substituted acrylates is enabled by a reaction cascade combining reductive radical-polar crossover with the established Ireland–Claisen rearrangement for the synthesis of valuable tertiary carboxylic acids.  相似文献   

3.
4.
5.
(Ph3C)[BPh(F)4]-catalyzed Hosomi-Sakurai allylation of allylsilanes with β,γ-unsaturated α-ketoesters has been developed to give γ,γ-disubstituted α-ketoesters in high yields with excellent chemoselectivity. Preliminary mechanistic studies suggest that trityl cation dominates the catalysis, while the silyl cation plays a minor role.  相似文献   

6.
A protocol of highly regio- and enantioselective copper-catalyzed hydroacylation of the non-terminal C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bond in 1,1-disubstituted terminal allenes with anhydrides has been developed. Both aromatic and aliphatic carboxylic anhydrides are applicable to the efficient construction of all carbon quarternary centers connected with a versatile C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bond and a useful ketone functionality. The synthetic potentials of the enantioenriched products have also been demonstrated. Density functional theory (DFT) calculations were performed to explain the steric outcome of the products: the hydroacylation proceeds through a six-membered transition state and the ligand-substrate steric interactions account for the observed enantioselectivity although the chiral ligand is far away from the to-be-genetated chiral center.

A protocol of highly regio- and enantioselective copper-catalyzed hydroacylation of the non-terminal C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bond in 1,1-disubstituted terminal allenes with anhydrides has been developed.  相似文献   

7.
α-Functionalized α,β-unsaturated aldehydes is an important class of compounds, which are widely used in fine organic synthesis, biology, medicine and pharmacology, chemical industry, and agriculture. Some of the 2-substituted 2-alkenals are found to be the key metabolites in plant and animal cells. Therefore, the development of efficient methods for their synthesis attracts the attention of organic chemists. This review focusses on the recent advances in the synthesis of 2-functionally substituted 2-alkenals. The approaches to the preparation of α-alkyl α,β-unsaturated aldehydes are not included in this review.  相似文献   

8.
Herein, we present the application of fluorinated carbohydrate-derived building blocks for α-hydroxy β-fluoro/β-trifluoromethyl and unsaturated phosphonates synthesis. Pudovik and Horner–Wadsworth–Emmons reactions were applied to achieve this goal. The proposed pathway of the key reactions is supported by the experimental results, as well as quantum chemical calculations. The structure of the products was established by spectroscopic (1D, 2D NMR) and spectrometric (MS) techniques. Based on our data received, we claim that the progress of the Pudovik and HWE reactions is significantly influenced by the acidic protons present in the molecules as assessed by pKa values of the reagent.  相似文献   

9.
The first non-enzymatic redox deracemization method using molecular oxygen as the terminal oxidant has been described. The one-pot deracemization of β,γ-alkynyl α-amino esters consisted of a copper-catalyzed aerobic oxidation and chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation with excellent functional group compatibility. By using benzothiazoline as the reducing reagent, an exclusive chemoselectivity at the C Created by potrace 1.16, written by Peter Selinger 2001-2019 N bond over the C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bond was achieved, allowing for efficient deracemization of a series of α-amino esters bearing diverse α-alkynyl substituent patterns. The origins of chemo- and enantio-selectivities were elucidated by experimental and computational mechanistic investigation. The generality of the strategy is further demonstrated by efficient deracemization of β,γ-alkenyl α-amino esters.

A one-pot deracemization of β,γ-alkynyl α-amino esters consisting of an aerobic oxidation and chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation has been described.  相似文献   

10.
11.
Olefin and diene transformations, catalyzed by organoaluminum-activated metal complexes, are widely used in synthetic organic chemistry and form the basis of major petrochemical processes. However, the role of M–(μ-Cl)–Al bonding, being proven for certain >C=C< functionalization reactions, remains unclear and debated for essentially more important industrial processes such as oligomerization and polymerization of α-olefins and conjugated dienes. Numerous publications indirectly point at the significance of M–(μ-Cl)–Al bonding in Ziegler–Natta and related transformations, but only a few studies contain experimental or at least theoretical evidence of the involvement of M–(μ-Cl)–Al species into catalytic cycles. In the present review, we have compiled data on the formation of M–(μ-Cl)–Al complexes (M = Ti, Zr, V, Cr, Ni), their molecular structure, and reactivity towards olefins and dienes. The possible role of similar complexes in the functionalization, oligomerization and polymerization of α-olefins and dienes is discussed in the present review through the prism of the further development of Ziegler–Natta processes and beyond.  相似文献   

12.
13.
Cyclodextrins (CDs) are cyclic oligosaccharides which can trap hydrophobic molecules and improve their chemical, physical, and biological properties. γ-CD showed the highest aqueous solubility with the largest cavity diameter among other CD types. The current study describes a direct and easy method for nucleophilic mono-aminos to be substituted with γ-CD and tested for their ability to host the guest curcumin (CUR) as a hydrophobic drug model. The mass spectrometry and NMR analyses showed the successful synthesis of three amino-modified γ-CDs: mono-6-amino-6-deoxy-cyclodextrine (γ-CD-NH2), mono-6-deoxy-6-ethanolamine-γ-cyclodextrine (γ-CD-NHCH2CH2OH), and mono-6-deoxy-6-aminoethylamino)-γ-cyclodextrin (γ-CD-NHCH2CH2NH2). These three amino-modified γ-CDs were proven to be able to host CUR as native γ-CDs with formation constants equal to 6.70 ± 1.02, 5.85 ± 0.80, and 8.98 ± 0.90 mM−1, respectively. Moreover, these amino-modified γ-CDs showed no significant toxicity against human dermal fibroblast cells. In conclusion, the current work describes a mono-substitution of amino-modified γ-CDs that can still host guests and showed low toxicity in human dermal fibroblasts cells. Therefore, the amino-modified γ-CDs can be used as a carrier host and be conjugated with a wide range of molecules for different biomedical applications, especially for active loading methods.  相似文献   

14.
A copper catalyzed borocarbonylation of BCPs via proximal C–C bond cleavage for the synthesis of γ-boryl-γ,δ-unsaturated carbonyl compounds has been developed. Using substituted benzylidenecyclopropanes (BCPs) and chloroformates as starting material, a broad range of γ-boryl-γ,δ-unsaturated esters were prepared in moderate to excellent yields with excellent regio- and stereoselectivity. Besides, when aliphatic acid chlorides were used in this reaction, γ-boryl-γ,δ-unsaturated ketones could be produced in excellent yields. When substituted BCPs were used as substrates, the borocarbonylation occurred predominantly at the proximal C–C bond trans to the phenyl group in a regio- and stereoselective manner, which leads to the Z-isomers as the products. This efficient methodology involves the cleavage of a C–C bond and the formation of a C–C bond as well as a C–B bond, and provides a new method for the proximal C–C bond difunctionalization of BCPs.

A copper catalyzed borocarbonylation of benzylidenecyclopropanes (BCPs) via proximal C–C bond cleavage for the synthesis of γ-boryl-γ,δ-unsaturated carbonyl compounds has been developed.  相似文献   

15.
The deprotonation of propargylic C–H bonds for subsequent functionalization typically requires stoichiometric metal alkyl or amide reagents. In addition to the undesirable generation of stoichiometric metallic waste, these conditions limit the functional group compatibility and versatility of this functionalization strategy and often result in regioisomeric mixtures. In this article, we report the use of dicarbonyl cyclopentadienyliron(ii) complexes for the generation of propargylic anion equivalents toward the direct electrophilic functionalization of propargylic C–H bonds under mild, catalytic conditions. This technology was applied to the direct conversion of C–H bonds to C–C bonds for the synthesis of several functionalized scaffolds through a one-pot cross dehydrogenative coupling reaction with tetrahydroisoquinoline and related privileged heterocyclic scaffolds. A series of NMR studies and deuterium-labelling experiments indicated that the deprotonation of the propargylic C–H bond was the rate-determining step when a Cp*Fe(CO)2-based catalyst system was employed.

[Cp*Fe(CO)2]+ facilitates the α-deprotonation of unsaturated C–C bond for propargylic and allylic C–H functionalization. Mechanistic studies reveal insights into the superior performance of the electron-rich and hindered ligand on iron.  相似文献   

16.
The rearrangement of some cyclopropanes featuring electron-withdrawing and electron releasing substitu-ents on vicinal carbons of the trimethylene ring to α-carboxy-γ-lactones upon contact with silica gel at room temperature has been discovered. One or two alkyl ester groups were chosen as electron attractor substitu-ents while one or two cyclopropyl units were used for the release of electron density. It was observed that the lactone forming process is strongly dependent upon these substituents to the extent that only two ester groups and at least one cyclopropane will confer enough vulnerability to the tetra-substituted cyclopropane for the rearrangement to take place. A comparative study of the lactonization by means of contact with silica and alkaline hydrolysis was performed and some mechanistic considerations are put forth.  相似文献   

17.
α-tocopherol (α-T) has the highest biological activity with respect to the other components of vitamin E; however, conventional formulations of tocopherol often fail to provide satisfactory bioavailability due to its hydrophobic characteristics. In this work, α-tocopherol-loaded nanoparticles based on chitosan were produced by membrane emulsification (ME). A new derivative was obtained by the cross-linking reaction between α-T and chitosan (CH) to preserve its biological activity. ME was selected as a method for nanoparticle production because it is recognized as an innovative and sustainable technology for its uniform-particle production with tuned sizes and high encapsulation efficiency (EE%), and its ability to preserve the functional properties of bioactive ingredients operating in mild conditions. The reaction intermediates and the final product were characterized by 1HNMR, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC), while the morphological and dimensional properties of the nanoparticles were analyzed using electronic scanning microscopy (SEM) and dynamic light scattering (DLS). The results demonstrated that ME has high potential for the development of α-tocopherol-loaded nanoparticles with a high degree of uniformity (PDI lower than 0.2), an EE of almost 100% and good mechanical strength, resulting in good candidates for the production of functional nanostructured materials for drug delivery. In addition, the chemical bonding between chitosan and α-tocopherol allowed the preservation of the antioxidant properties of the bioactive molecule, as demonstrated by an enhanced antioxidant property and evaluated through in vitro tests, with respect to the starting materials.  相似文献   

18.
Quaternary amino acids are important tools for the modification and stabilisation of peptide secondary structures. Here we describe a practical and scalable synthesis applicable to quaternary alpha-arylated amino acids (Q4As), and the development of solid-phase synthesis conditions for their incorporation into peptides. Monomeric and dimeric α-helical peptides are synthesised with varying degrees of Q4A substitution and their structures examined using biophysical methods. Both enantiomers of the Q4As are tolerated in folded monomeric and oligomeric α-helical peptides, with the (R)-enantiomer slightly more so than the (S).

Both R and S enantiomers of Fmoc-protected amino acids bearing α-aryl substituents may be made on gram scale. Solid-phase synthesis leads to helical peptides unperturbed by the presence of these additional α-aryl groups.  相似文献   

19.
14-3-3 proteins are abundant, intramolecular proteins that play a pivotal role in cellular signal transduction by interacting with phosphorylated ligands. In addition, they are molecular chaperones that prevent protein unfolding and aggregation under cellular stress conditions in a similar manner to the unrelated small heat-shock proteins. In vivo, amyloid β (Aβ) and α-synuclein (α-syn) form amyloid fibrils in Alzheimer’s and Parkinson’s diseases, respectively, a process that is intimately linked to the diseases’ progression. The 14-3-3ζ isoform potently inhibited in vitro fibril formation of the 40-amino acid form of Aβ (Aβ40) but had little effect on α-syn aggregation. Solution-phase NMR spectroscopy of 15N-labeled Aβ40 and A53T α-syn determined that unlabeled 14-3-3ζ interacted preferentially with hydrophobic regions of Aβ40 (L11-H21 and G29-V40) and α-syn (V3-K10 and V40-K60). In both proteins, these regions adopt β-strands within the core of the amyloid fibrils prepared in vitro as well as those isolated from the inclusions of diseased individuals. The interaction with 14-3-3ζ is transient and occurs at the early stages of the fibrillar aggregation pathway to maintain the native, monomeric, and unfolded structure of Aβ40 and α-syn. The N-terminal regions of α-syn interacting with 14-3-3ζ correspond with those that interact with other molecular chaperones as monitored by in-cell NMR spectroscopy.  相似文献   

20.
Cyclodextrins (CDs) are cyclic oligosaccharides that have found widespread application in numerous fields. CDs have revealed a number of various health benefits, making them potentially useful food supplements and nutraceuticals. In this study, the impact of α-, β-, and γ-CD at different concentrations (up to 8% of the flour weight) on the wheat dough and bread properties were investigated. The impact on dough properties was assessed by alveograph analysis, and it was found that especially β-CD affected the viscoelastic properties. This behavior correlates well with a direct interaction of the CDs with the proteins of the gluten network. The impact on bread volume and bread staling was also assessed. The bread volume was in general not significantly affected by the addition of up to 4% CD, except for 4% α-CD, which slightly increased the bread volume. Larger concentrations of CDs lead to decreasing bread volumes. Bread staling was investigated by texture analysis and low field nuclear magnetic resonance spectroscopy (LF-NMR) measurements, and no effect of the addition of CDs on the staling was observed. Up to 4% CD can, therefore, be added to wheat bread with only minor effects on the dough and bread properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号