首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein imprinting is a promising tool for generating artificial biomimetic receptors with antibody-like specific recognition sites. Recently, protein-imprinted materials, as potential antibody substitutes, have attracted much attention in many fields, for example chemical sensors, chromatographic stationary phases, and artificial enzymes, owing to their long-term storage stability, potential re-usability, resistance to harsh environment, and low cost. In this critical review, we focus our discussion on the rational preparation of protein-imprinted materials in terms of choice of template, functional monomer, crosslinker, and polymerization format. In addition, several highlighted applications of protein-imprinted materials are emphasized, not only in well-known fields but also in some unique fields, for example proteomics and tissue engineering. Finally, we propose challenges arising from the intrinsic properties of protein imprinting, for example obtaining the template, heterogeneous binding, and extrinsic competition, for example immobilized aptamers.  相似文献   

2.
3.
The article covers factors that determine fundamental difficulties of chemical phase analysis of a mixture of solid phases of inorganic compounds. Stoichiographic principles and methods, novel for analytical chemistry and leading to the efficient solution of the problems of phase analysis, are discussed. Conditions of the selective separation of mixtures of multiphase multielement solid compounds and principles of the new method, fan-like separation, ensuring the extraction of individual phases from unseparated mixtures, are considered. An idea of a complex method of solving analytical problems by stoichiography methods in proposed. The problem of the multiplicity of objects of analysis is discussed and general principles of the efficient solution of problems of the detection and identification of components of complex mixtures of unknown chemical composition are considered.  相似文献   

4.
Wai CM  Lin Y  Brauer R  Wang S  Beckert WF 《Talanta》1993,40(9):1325-1330
Mercuric ions (Hg(2+)) can be extracted from solid samples (cellulose matrix) using methanol modified supercritical CO(2) containing the fluorinated chelating agent lithium bis(trifluoroethyl)dithiocarbamate (LiFDDC). Methylmercuric chloride (CH(3)HgCl) and dimethylmercury [(CH(3))(2)Hg] can be extracted by supercritical CO(2) without chelating agent and modifier. The solubility of Hg(FDDC)(2) in supercritical CO(2) has been determined to be 5 x 10(-3)M at 5O degrees C and 150 atm, which is about 3 orders of magnitude greater than that of the non-fluorinated analogue Hg(DDC)(2). Use of methanol (5%)-modified CO(2) further enhances the solubility of Hg(FDDC)(2) by a factor of 2.4. A small amount of water added to the sample matrix tends to facilitate the extraction of Hg(FDDC)(2) and CH(3)HgCl. Potential applications of this in situ chelation-supercritical fluid extraction method for the preconcentration of mercury species and treatment of mercury contaminated wastes are discussed.  相似文献   

5.
The technical and experimental aspects of creating the conditions of differential dissolution in a flow stoichiographic system are discussed; the scheme of the experimental apparatus, stoichiograph, is presented. The construction, operation conditions of the main units of the stoichiograph, and sample treatment issues are considered. The principles of the creation and optimization of the conditions of the dynamic differential dissolution for the analysis of compounds and materials of the known and unknown phase composition are discussed: the composition of solvents and temperature, and the principles of their variation in time, including those in the processes of stoichiographic titration.  相似文献   

6.
The state of the art in determination of the phase composition of complex inorganic solids by chemical and electrochemical methods is discussed. The theoretical and practical essentials of stoichiography and the new stoichiographic method of differential dissolution (DD) are reported. The unique feature of this method is that reference samples of the analyzed solid phases are not necessary. The development of this stoichiographic method was strongly affected by voltammetry. The application of the DD method for determining the chemical composition of various substances and materials is presented. The complementary use of voltammetry and DD for the detection, identification, and quantitative determination of inhomogeneity of the chemical composition of high-temperature superconductors was shown to be efficient.  相似文献   

7.
This paper discusses the use of two relative unexploited classes of molecules based on imino-dialkylphosphinate [(EPR2)2NH] (E = Se or Te) and dialkyldiselenophosphinate [HNEt3][R2PSe2] and subsequently, their potential for the deposition of useful materials as either thin films or nanoparticles. The structural properties of the materials obtained were elucidated by means of X-ray powder diffraction, scanning electron microscope and transmission electron microscope.  相似文献   

8.
The computational design of new and interesting inorganic materials is still an ongoing challenge. The motivation of these efforts is to aid the often difficult task of crystal structure determination, to rationalize different but related structure types, or to help limit the domain of structures that are possible in a given system. Over the past decade, simulation methods have continuously evolved towards the prediction of new structures using minimal input information in terms of symmetry, cell parameters, or chemical composition. So far, this task of identifying candidate structures through an analysis of the energy landscape of chemical systems has been particularly successful for predominantly ionic systems with relatively small numbers of atoms or ions in the simulation cell. After an introductory section, the second section of this work presents the historical developments of such simulation methods in this area. The following sections of the work are dedicated to the introduction of the building unit concept in simulation methods: we present simulation approaches to structure prediction employing both primary (aggregate of atoms) and secondary (aggregate of coordination polyhedra) building units. While structure prediction with primary units is a straightforward extension of established approaches, the AASBU method (automated asssembly of secondary building units) focusses on the topology of network-based structures. This method explores the possible ways to assemble predefined inorganic building units in three-dimensional space, opening the way to the manipulation of very large building units (up to 84 atoms in this work). As illustrative examples we present the prediction of candidate structures for Li(4)CO(4), the identification of topological relationships within a family of metalphosphates, ULM-n and MIL-n, and finally the generation of new topologies by using predefined large building units such as a sodalite or a double-four-ring cage, for the prediction of new and interesting zeolite-type structures.  相似文献   

9.
Within the last two decades major progress has been achieved in understanding the adsorption and phase behavior of fluids in ordered nanoporous materials and in the development of advanced approaches based on statistical mechanics such as molecular simulation and density functional theory (DFT) of inhomogeneous fluids. This progress, coupled with the availability of high resolution experimental procedures for the adsorption of various subcritical fluids, has led to advances in the structural characterization by physical adsorption. It was demonstrated that the application of DFT based methods on high resolution experimental adsorption isotherms provides a much more accurate and comprehensive pore size analysis compared to classical, macroscopic methods. This article discusses important aspects of major underlying mechanisms associated with adsorption, pore condensation and hysteresis behavior in nanoporous solids. We discuss selected examples of state-of-the-art pore size characterization and also reflect briefly on the existing challenges in physical adsorption characterization.  相似文献   

10.
Hydrophobicity and floatability of solids have been analyzed from the standpoint of properties of solid-water and solid-water vapors interfaces, chemical bonds, bulk properties, crystal structure of the solid, and reactivity of the solid with water. Although the hydrophobicity results from complex interactions in the solid-water-air system, simple equations and rules for predicting hydrophobicity and floatability are presented. The applicability of the Gaudin-Miaw-Spedden theory which states that molecular and sheet crystals, if their structure is controlled by the residual bonds across their basal planes, are floatable was confirmed. It was also shown that elements and compounds with different degrees of ionic-covalent and metallic-nonmetallic characters of bonds in the absence of residual bonds can be either hydrophilic, hydrophobic, or change their properties from hydrophobic to hydrophilic and vice versa. For some materials, hydrophobidty was found to be time-dependent. Decreasing hydrophobicity occurs with the oxidation and hydroxylation of the surface (oxides, metals), while increasing hydrophobicity takes place due to non-dissociative adsorption of water vapors on the surface (noble metals). Increased hydrophobicity can also be due to the formation of hydrophobic species such as sulfur species on the surface of Sulfides. It was demonstrated that the potential hydrophobicity of solids, expressed as the contact angle formed between the three involved (solid, water, and air) phases, can be evaluated from the Hamaker constants.This work supplements the Gaudin-Miaw-Spedden theory by showing that not only molecular crystals (paraffin, I2, S8, As4O6, As2S2) and non-ionic sheet crystals (MoS2, Sb2S3, talc, graphite, As2S3, boric acid, BN) but also elements and crystalline compounds without residual bonds can be hydrophobic and floatable. A partial list of such materials includes Hg, Ge, Si, SiC, AgI, CaF2, and diamond (whose hydrophobidties are already well known) as well as BaSO4, FeTiO3, In, and Sn (whose hydrophobidties have been established in this work). It was also demonstrated that the hydrophobidty of some solids changes as a result of reaction of the surface with constituents of the air.  相似文献   

11.
12.
Computer simulations of the co-adsorption of water and methanoic acid at a range of surface features of calcite and fluorite minerals have shown that the relative adsorption energies for the two minerals are reversed when solvent effects are included in the calculations, a finding which is important in the search for effective surfactant reagents in flotation techniques, which are used extensively in the mining and pharmaceutical industries and in environmental remediation processes.  相似文献   

13.
A method of synthesis of metal oxide films by carboxylate pyrolysis on a substrate surface is developed. The optic physical properties of the obtained films are studied by spectrophotometry using specialdesign fiber-optic probes.  相似文献   

14.
The solvothermal method has recently been extended from zeolite synthesis to the formation of condensed inorganic solids, which find uses in diverse areas due to properties such as ionic-conductivity, solid-state magnetism, giant magnetoresistance, low thermal expansion and ferroelectricity. This offers specific advantages over the traditional ceramic synthetic routes to inorganic solids and these are highlighted with examples from the recent literature, and the efforts focussed on determining the formation mechanism of solids from the heterogeneous mixtures used in solvothermal procedures are discussed.  相似文献   

15.
质子传导在燃料电池、气体传感及电致显色等领域有重要的研究前景.尤其是在燃料电池领域,由于其具有低污染、高效率、操作简单和寿命长等优点而被广泛应用.本文介绍了质子传导在质子交换膜燃料电池中的重要作用及工作原理,分析了质子交换膜的质子传导机理,并简要分析总结了近年来关于无机及其复合质子导体材料的研究进展.  相似文献   

16.
The prepaparation of amorphous, homogeneous blends of zwitterionic polymers and transition metal salts was investigated. Homogeneous miscibility was achieved in many cases up to equimolar amounts of salt, depending on the anion and cation chosen. Various analytical techniques point to a solid state solution of the inorganic ions in the polymer matrix.  相似文献   

17.
Endo- and exotemplating to create high-surface-area inorganic materials   总被引:3,自引:0,他引:3  
Porous and high-surface-area materials are of interest to many scientific communities. Templating pathways can be used to synthesize such materials with a high degree of control over their structural and textural properties. As templates molecular or supramolecular units are added to the synthesis mixture. They are occluded in the growing solid and leave a pore system after their removal. For such templates the term "endotemplate" is introduced. Alternatively, the templates can be materials with structural pores in which another solid is created, thus providing a scaffold for the synthesis. After removal of the scaffold, a porous or finely divided solid remains, depending on the connectivity of the template. Such a template is termed an "exotemplate". By judicious choice of the templating procedure, unprecedented control of the structure and texture on length scales between nanometers and micrometers has been achieved over the last few years.  相似文献   

18.
Graphdiyne(GDY),a novel two-dimensional(2D)carbon allotrope featuring one-atom-thick planar layers of sp andhybridized carbon network,is a rapidly rising star on the horizon of materials science.Because of its unparalleled structural,electronic,chemical and physical properties,it has been receiving unprecedented increases from fundamental studies to practical applications,particularly the field of energetic materials.In this review,we aim at providing an up-to-date comprehensive overview on the state-of-the-art research into GDY,from theoretical studies to the key achievements in the development of new GDY-based energetic materials for energy storage and conversion.By reviewing the state-of-the-art achievements,we aim to address the benefits and issues of GDY-based materials,as well as highlighting the existing key challenges and future opportunities in this exciting field.  相似文献   

19.
The direct intercalation reaction of ferrocene (bis(eta5-cyclopentadienyl)iron(II), Fc) with a highly hydrated layered zirconium phosphate (ZrP) resulted in the formation of the ferrocenium ion (Fc+) within the ZrP material. The Fc+-intercalated ZrP material has an interlayer distance of 10.7 A. The intercalated material was used as an electron acceptor for the oxidation of both ferro-cytochrome c and the excited state of tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+). Upon contact of the material with a 1.5 x 10(-5) M solution of ferro-cytochrome c, the UV-vis absorption spectrum shows the successful formation of ferri-cytochrome c. Luminescence spectroscopy shows that the Fc+-intercalated ZrP material quenches the luminescence of [Ru(bpy)3]2+. The excited-state quenching mechanism of [Ru(bpy)3]2+* by Fc+-intercalated ZrP follows a dynamic plus sphere of action model. The second-order dynamic quenching rate constant kq is 2.2 x 10(8) M(-1) s(-1).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号