首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate how the firing activity and the subsequent phase synchronization of neural networks with smallworld topological connections depend on the probability p of adding-links. Network elements are described by two-dimensional map neurons (2DMNs) in a quiescent original state. Neurons burst for a given coupling strength when the topological randomness p increases, which is absent in a regular-lattice neural network. The bursting activity becomes frequent and synchronization of neurons emerges as topological randomness further increases. The maximal firing frequency and phase synchronization appear at a particular value of p. However, if the randomness p further increases, the firing frequency decreases and synchronization is apparently destroyed.  相似文献   

2.
The duplication and divergence process is ubiquitous in nature and man-made networks. Motivated by the duplication-divergence mechanism which depicts the growth of protein networks, we propose a weighted network model in which topological evolution is coupled with weight dynamics. Large scale numerical results indicate that our model can naturally generate networks with power-law-like distributions of degree, strength and weight. The degree-strength correlation is illustrated as well. These properties are in agreement well with empirical data observed in real-world systems. Furthermore, by altering the retention probability δ, weighted, structured exponential networks are realized.  相似文献   

3.
Yan Hong Zheng  Qi Shao Lu 《Physica A》2008,387(14):3719-3728
The spatiotemporal patterns and chaotic burst synchronization of a small-world neuronal network are studied in this paper. The synchronization parameter, similarity parameter and order parameter are introduced to investigate the dynamics behaviour of the neurons. Chaotic burst synchronization and nearly complete synchronization can be observed if the link probability and the coupling strength are large enough. It is found that with increasing link probability and the coupling strength chaotic bursts become appreciably synchronous in space and coherent in time, and the maximal spatiotemporal order appears at some particular values of the probability and the coupling strength, respectively. The larger the size of the network, the smaller the probability and the coupling strength are needed for the network to achieve burst synchronization. Moreover, the bursting activity and the spatiotemporal patterns are robust to small noise.  相似文献   

4.
In this Letter, we propose a growing network model that can generate scale-free networks with a tunable community strength. The community strength, C, is directly measured by the ratio of the number of external edges to that of the internal ones; a smaller C   corresponds to a stronger community structure. By using the Kuramoto model, we investigated the phase synchronization on this network and found an abnormal region (C?0.002C?0.002), in which the network has even worse synchronizability than the unconnected case (C=0C=0). On the other hand, the community effect will vanish when C exceeds 0.1. Between these two extreme regions, a stronger community structure will hinder global synchronization.  相似文献   

5.
Yanli Zou  Guanrong Chen 《Physica A》2009,388(14):2931-2940
Previous studies concerning pinning control of complex-network synchronization have very often demonstrated that in an unweighted symmetrical scale-free network, controlling the high-degree nodes is more efficient than controlling randomly chosen ones; due to the heterogeneity of the node-degree or edge-connection distribution of the scale-free network, small-degree nodes have relatively high probabilities of being chosen at random but their control has less influence on the other nodes through the network. This raises the question of whether or not controlling the high-degree nodes is always better than controlling the small ones in scale-free networks. Our answer to this is yes and no. In this study, we carry out extensive numerical simulations to show that in an unweighted symmetrical Barabasi-Albert scale-free network, when the portion of controlled nodes is relatively large, controlling the small nodes becomes better than controlling the big nodes and controlling randomly chosen nodes has approximately the same effect as controlling the big ones. However, we also show that for normalized weighted scale-free networks, controlling the big nodes is in fact always better than controlling the small ones.  相似文献   

6.
In this paper, inspired by the idea that different nodes should play different roles in network synchronization, we bring forward a coupling method where the coupling strength of each node depends on its neighbors' degrees. Compared with the uniform coupled method and the recently proposed Motter-Zhou-Kurths method, the synchronizability of scale-free networks can be remarkably enhanced by using the present coupling method, and the highest network synchronizability is achieved at β=1 which is similar to a method introduced in [AIP Conf. Proc. 776, 201 (2005)].  相似文献   

7.
We study the phenomenon of stochastic resonance on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise via voltage-gated ion channels embedded in neuronal membranes. Importantly thereby, the subthreshold periodic driving is introduced to a single neuron of the network, thus acting as a pacemaker trying to impose its rhythm on the whole ensemble. We show that there exists an optimal intensity of intrinsic ion channel noise by which the outreach of the pacemaker extends optimally across the whole network. This stochastic resonance phenomenon can be further amplified via fine-tuning of the small-world network structure, and depends significantly also on the coupling strength among neurons and the driving frequency of the pacemaker. In particular, we demonstrate that the noise-induced transmission of weak localized rhythmic activity peaks when the pacemaker frequency matches the intrinsic frequency of subthreshold oscillations. The implications of our findings for weak signal detection and information propagation across neural networks are discussed.  相似文献   

8.
9.
We investigate the motion of the globally coupled maps (logistic map) driven by uniform disorder. It is shown that this disorder can produce multi-synchronization for the globally coupled chaotic maps studied by us. The disorder determines the synchronized dynamics, leading to the emergence of a wide range of new collective behaviour in which the individual units in isolation are incapable of producing in the absence of the disorder. Our results imply that the disorder can tame the collective motion of the coupled chaotic maps.  相似文献   

10.
Synchronization is an important phenomenon which occurs in the dynamics of complex systems. Synchronized states emerge both from an adjustment of the system parameters and from an application of a proper external stimulus. In the present paper we study synchronized activity in a neural network model whose dynamics is driven by an external activation. In this context we are interested in its synchronizability, i.e. the existence of inputs causing the model system to synchronize. Furthermore, we investigate global synchronizability properties of stochastic network structure ensembles (instead of single realizations of a network architecture). We study the small world network, a model of preferential linking structure, and the classical Erd?s-Renyi random graph as particular examples of network topologies. Their synchronizability properties are investigated by analytical arguments and numerical simulations. Our analysis shows the emergence of synchronizable states of network ensembles for a wide range of the parameter values. In addition we observe and study the transition behaviour from synchronizability to nonsynchronizability.  相似文献   

11.
Xia Shi  Qishao Lu 《Physica A》2009,388(12):2410-2419
Burst synchronization and burst dynamics of a system consisting of two map-based neurons coupled through electrical or chemical synapses are discussed. Some basic characteristic quantities are introduced to describe burst synchronization and burst dynamics of neurons. It is observed that excitatory coupling leads to in-phase burst synchronization but inhibitory coupling results in anti-phase one. By using the basic characteristics of burst dynamics, the effects of the intrinsic bursting properties and the coupling schemes on complex bursting behaviors are also presented for both inhibitory and excitatory couplings. The results are instructive to identify bursting behaviors through experimental data.  相似文献   

12.
We study the collective temporal coherence of a small-world network of coupled stochastic Hodgkin-Huxley neurons. Previous reports have shown that network coherence in response to a subthreshold periodic stimulus, thus subthreshold signal encoding, is maximal for a specific range of the fraction of randomly added shortcuts relative to all possible shortcuts, p, added to an initially locally connected network. We investigated this behavior further as a function of channel noise, stimulus frequency and coupling strength. We show that temporal coherence peaks when the frequency of the external stimulus matches that of the intrinsic subthreshold oscillations. We also find that large values of the channel noise, corresponding to small cell sizes, increases coherence for optimal values of the stimulus frequency and the topology parameter p. For smaller values of the channel noise, thus larger cell sizes, network coherence becomes insensitive to these parameters. Finally, the degree of coupling between neurons in the network modulates the sensitivity of coherence to topology, such that for stronger coupling the peak coherence is achieved with fewer added short cuts.  相似文献   

13.
Order Parameter Hysteresis on the Complex Network   总被引:1,自引:0,他引:1       下载免费PDF全文
Collective synchronization is investigated on the small-world network (NW model). The order parameter is introduced to measure the synchronization of phase. It is found that there are differences between the processes of synchronization and desynchronization. The dependence of order parameter on the coupling strength is shown like a hysteresis loop. The size of the loop demonstrates the non-monotonicity with the change of adding probability, and is relevant to the construction of the network. The area may be maximum, as the adding probability is equal to 0.4. This phenomenon indicates that the clusters in the network play an important role in the processes of synchronization and desynchronization.  相似文献   

14.
The Hodgkin-Huxley (H-H) neuron model driven by stimuli just above threshold shows a noise-induced response delay with respect to time to the first spike for a certain range of noise strengths, an effect called “noise delayed decay” (NDD). We study the response time of a network of coupled H-H neurons, and investigate how the NDD can be affected by the connection topology of the network and the coupling strength. We show that the NDD effect exists for weak and intermediate coupling strengths, whereas it disappears for strong coupling strength regardless of the connection topology. We also show that although the network structure has very little effect on the NDD for a weak coupling strength, the network structure plays a key role for an intermediate coupling strength by decreasing the NDD effect with the increasing number of random shortcuts, and thus provides an additional operating regime, that is absent in the regular network, in which the neurons may also exploit a spike time code.  相似文献   

15.
This Letter considers the problem of controlling a weighted complex dynamical network with coupling time-varying delay toward an assigned evolution. Adaptive controllers have been designed for nodes of the controlled network. Analytical results show that the states of the weighted dynamical network can globally asymptotically synchronize onto a desired orbit under the designed controllers. In comparison with the common linear feedback controllers, the adaptive controllers have strong robustness against asymmetric coupling matrix, time-varying weights, delays, and noise. Numerical simulations illustrated by a nearest-neighbor coupling network verify the effectiveness of the proposed controllers.  相似文献   

16.
Markus Brede 《Physics letters. A》2008,372(15):2618-2622
In this Letter we discuss a method for generating synchrony-optimized coupling architectures of Kuramoto oscillators with a heterogeneous distribution of native frequencies. The method allows us to relate the properties of the coupling network to its synchronizability. These relations were previously only established from a linear stability analysis of the identical oscillator case. We further demonstrate that the heterogeneity in the oscillator population produces heterogeneity in the optimal coupling network as well. Two rules for enhancing the synchronizability of a given network by a suitable placement of oscillators are given: (i) native frequencies of adjacent oscillators must be anti-correlated and (ii) frequency magnitudes should positively correlate with the degree of the node they are placed at.  相似文献   

17.
We investigate the collection behaviour of coupled phase oscillators on Newman-Watts small-world networks in one and two dimensions. Each component of the network is assumed as an oscillator and each interacts with the others following the Kuramoto model We then study the onset of global synchronization of phases and frequencies based on dynamic simulations and finite-size scaling. Both the phase and frequency synchronization are observed to emerge in the presence of a tiny fraction of shortcuts and enhanced with the increases of nearest neighbours and lattice dimensions.  相似文献   

18.
Synchronization processes in populations of locally interacting elements are the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understanding synchronization phenomena in natural systems now take advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also take an overview of the new emergent features coming out from the interplay between the structure and the function of the underlying patterns of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.  相似文献   

19.
Recently, projective synchronization (PS) has been widely studied in more than one system. In this Letter, we propose a linear controller and an updated law to realize the PS in drive-response dynamical networks of partially linear systems with time-varying coupling delay, based on the Lyapunov stability theory. A sufficient condition is obtained. Moreover, numerical simulations are provided to verify the correctness and effectiveness of the scheme.  相似文献   

20.
Assortative/disassortative mixing is an important topological property of a network. A network is called assortative mixing if the nodes in the network tend to connect to their connectivity peers, or disassortative mixing if nodes with low degrees are more likely to connect with high-degree nodes. We have known that biological networks such as protein-protein interaction networks (PPI), gene regulatory networks, and metabolic networks tend to be disassortative. On the other hand, in biological evolution, duplication and divergence are two fundamental processes. In order to make the relationship between the property of disassortative mixing and the two basic biological principles clear and to study the cause of the disassortative mixing property in biological networks, we present a random duplication model and an anti-preference duplication model. Our results show that disassortative mixing networks can be obtained by both kinds of models from uncorrelated initial networks. Moreover, with the growth of the network size, the disassortative mixing property becomes more obvious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号