首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of how the magnetic field controls the critical end point of the first-order valence transition is clarified, which is essentially ascribed to charge degrees of freedom. It is shown that the quantum critical point is induced by applying the magnetic field, which explains a peculiar magnetic response in CeIrIn5 and sharp contrast between X=Ag and Cd for YbXCu4. Significance of the proximity of the first-order valence transition in the Ce- and Yb-based heavy fermions is pointed out.  相似文献   

2.
A proximity effect in an s-wave superconductor/ferromagnet (SC/F) junction is theoretically studied using the second order perturbation theory for the tunneling Hamiltonian and Green's function method. We calculate a pair amplitude induced by the proximity effect in a weak ferromagnetic metal (FM) and a half-metal (HM). In the SC/FM junction, it is found that a spin-singlet pair amplitude (Ψs) and spin-triplet pair amplitude (Ψt) are induced in FM and both amplitudes depend on the frequency in the Matsubara representation. Ψs is an even function and Ψt is an odd function with respect to the Matsubara frequency (ωn). In the SC/HM junction, we examine the proximity effects by taking account of magnon excitations in HM. It is found that the triplet-pair correlation is induced in HM. The induced pair amplitude in HM shows a damped oscillation as a function of the position and contains the terms of even and odd functions of ωn as in the case of the SC/FM junction. We discuss that in our tunneling model the pair amplitude of even function of ωn only contributes to a Josephson current.  相似文献   

3.
In the present paper, we present thermal and electrical transport properties of pristine and co-doped samples of high temperature superconductors Gd0.95Pr0.05Ba2Cu2.94M0.06O7−δ. It is found that all the samples, except the Mn co-doped sample, show metallic behavior in the normal state. It is observed that the upper critical field has a correlation with the substituent site of the co-dopant. Thermal conductivity κ(T) of all the samples, except the one with Zn co-doping, exhibits a hump like structure around their respective transition temperatures. A negative sign of the measured thermo-power (S) in Gd-123 indicates that electron-like carriers dominate the heat transport in the pristine sample; whereas a sign reversal in S, as a consequence of the change of dominant carrier upon doping, is observed. Specific heat (CP) measurements show a jump around the transition temperature (TC) for the pristine sample, however, such a jump in CP is strongly suppressed for the doped samples.  相似文献   

4.
One of the challenges of cellular automaton research is finding models with a low complexity and at the same time a rich dynamics. A measure of low complexity is the number of states in the model and the number of transition rules to switch between those states. In this paper, we propose a 2-dimensional 2-state cellular automaton that-though governed by a single simple transition rule-has a sufficiently rich dynamics to be computationally universal. According to the transition rule, a cell’s state is determined by the sum of the states of the cells at orthogonal or diagonal distances one or two from the cell (distance-2 Moore neighbourhood), but not by the previous state of the cell itself. Notwithstanding its simplicity, this model is able to generate a great variety of patterns, including several types of stable configurations, oscillators and patterns that move over cellular space (gliders). We prove the computational universality of the model by constructing a universal set of logic gates (NOT and AND) from these patterns. A key element in this proof is the shifting of phases and positions of signals such that they meet the input requirements of the logic gates. Similarities of the model with classical spin systems are also discussed.  相似文献   

5.
The potential energy curves, permanent and transition dipole moments as well as spin-orbit and angular coupling matrix elements between the KCs electronic states converging to the lowest three dissociation limits were evaluated in the basis of the spin-averaged wavefunctions corresponding to pure Hund’s coupling case (a). The quasi-relativistic matrix elements have been obtained for a wide range of internuclear distance by using of small (9-electrons) effective core pseudopotentials of both atoms. The core-valence correlation has been accounted for a large scale multi-reference configuration interaction method combined with semi-empirical core polarization potentials. The static dipole polarizabilities of the ground X1Σ+ and a3Σ+ states were extracted from the closed-shell coupled-cluster energies by the finite-field method. Among the singlet and triplet Σ+ states manifold the pronounced avoided crossing effect between repulsive walls of the (2,3)3Σ+ states has been discovered and analyzed by finite-difference calculation of radial coupling matrix elements. The resulting transition dipole moments and potentials were used to predict radiative lifetimes and emission branching ratios of excited vibronic states while the calculated angular coupling matrix elements were transformed to Λ-doubling constants of the (1,2)1Π states and magnetic g-factor of the ground state. The accuracies of the present results are discussed by comparing with experimental data and preceding calculations.  相似文献   

6.
In this study, a phase-change memory device was fabricated and the origin of device failure mode was examined using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Ge2Sb2Te5 (GST) was used as the active phase-change material in the memory device and the active pore size was designed to be 0.5 m. After the programming signals of more than 2×106 cycles were repeatedly applied to the device, the high-resistance memory state (reset) could not be rewritten and the cell resistance was fixed at the low-resistance state (set). Based on TEM and EDS studies, Sb excess and Ge deficiency in the device operating region had a strong effect on device reliability, especially under endurance-demanding conditions. An abnormal segregation and oxidation of Ge also was observed in the region between the device operating and inactive peripheral regions. To guarantee an data endurability of more than 1×1010 cycles of PRAM, it is very important to develop phase-change materials with more stable compositions and to reduce the current required for programming.  相似文献   

7.
The KPII equation is an integrable nonlinear PDE in 2+1 dimensions (two spatial and one temporal), which arises in several physical circumstances, including fluid mechanics, where it describes waves in shallow water. It provides a multidimensional generalisation of the renowned KdV equation. In this work, we employ a novel approach recently introduced by one of the authors in connection with the Davey-Stewartson equation (Fokas (2009) [13]), in order to analyse the initial-boundary value problem for the KPII equation formulated on the half-plane. The analysis makes crucial use of the so-called d-bar formalism, as well as of the so-called global relation. A novel feature of boundary as opposed to initial value problems in 2+1 is that the d-bar formalism now involves a function in the complex plane which is discontinuous across the real axis.  相似文献   

8.
The pronounced cusp in K→3π decays which is generated by the pion mass difference is directly related to the ππS-wave scattering lengths. We apply a nonrelativistic effective field theory framework to evaluate the amplitudes for KL→3π decays in a systematic manner. Electromagnetic effects in the neutral channel KL→3π0 are also discussed.  相似文献   

9.
We study the charge dynamics and electronic structure by optical spectroscopy technique. Here we focus on the following four issues: (1) the evolution of optical spectra with Na content; (2) the spectral features specific to different regions in the phase diagram; (3) the c-axis optical response for crystal at the A-type antiferromagnetic region; (4) the optical response of misfit-layered Bi2M2Co2Oy (M=Ba, Sr, Ca) and Ca3Co4Oy single crystals.  相似文献   

10.
St. Kovachev 《Physics letters. A》2010,374(8):1078-1082
Size, substrate, doping and magnetic field effects on the phonon properties in multiferroic BiFeO3 thin films are studied based on a microscopic model. We obtain an anomaly near the magnetic phase transition temperature TN which can be attributed to the magnetoelectric nature of BiFeO3 and strong anharmonic spin-phonon interaction. It is shown that due to crystal lattice distortion for dopants with ionic radius smaller than that of the host ions the phonon energy decreases (for example Tb or Ti), whereas for the opposite case (larger radius of the doping ions, for example Co or Ni) it increases. The phonon damping is always enhanced compared to the undoped thin film.  相似文献   

11.
Neutron scattering results on single crystals shed light on the static and dynamic properties of the superconductor () PuCoGa5 and its isostructural but antiferromagnetic () homologue NpCoGa5. By polarized neutron diffraction the magnetization density in the paramagnetic state of both compounds has been inferred. The microscopic magnetization of NpCoGa5 is consistent with the orbital and spin components of a localized Np3+ magnetic moment. In the case of PuCoGa5 the microscopic magnetization is small, temperature-independent and cannot be described as a localized Pu3+ magnetic moment. For NpCoGa5 a dynamic magnetic signal has been observed by three-axis spectroscopy in the antiferromagnetically ordered state. The magnetic signal is strongest at the antiferromagnetic zone center and an energy transfer of about 5 meV. Magnetic fluctuations persist at this position in the paramagnetic state. The dynamic response is similar to the dynamic response observed in other actinide intermetallic compounds. This supports the possibility that magnetic fluctuations could also be present in the paramagnetic superconductor PuCoGa5.  相似文献   

12.
The properties of Ising square lattices with nearest neighbor ferromagnetic exchange confined in a corner geometry, are studied by means of Monte Carlo simulations. Free boundary conditions at which boundary magnetic fields ±h are applied, i.e., at the two boundary rows ending at the lower left corner a field +h acts, while at the two boundary rows ending at the upper right corner a field −h acts. For temperatures T less than the critical temperature Tc of the bulk, this boundary condition leads to the formation of two domains with opposite orientation of the magnetization direction, separated by an interface which for T larger than the filling transition temperature Tf(h) runs from the upper left corner to the lower right corner, while for T<Tf(h) this interface is localized either close to the lower left corner or close to the upper right corner. It is shown that for T=Tf(h) the magnetization profile m(z) in the z-direction normal to the interface simply is linear and the interfacial width scales as wL, while for T>Tf(h) it scales as . The distribution P(?) of the interface position ? (measured along the z-direction from the corners) decays exponentially for T<Tf(h) from either corner, is essentially flat for T=Tf(h), and is a Gaussian centered at the middle of the diagonal for T>Tf(h). Unlike the findings for critical wetting in the thin film geometry of the Ising model, the Monte Carlo results for corner wetting are in very good agreement with the theoretical predictions.  相似文献   

13.
We have carried out specific heat measurements on EuIn2P2 at high magnetic fields perpendicular to the c-axis in the hexagonal crystal structure in order to understand its thermal properties. The temperature dependence of the specific heat exhibits a clear λ-type anomaly due to a magnetic transition at , indicating that the magnetic transition is of second-order. The λ-type anomaly becomes markedly broader with increasing the magnetic field. This remarkable field-dependence is consistent with the results of previous magnetization measurements which suggest that Eu2+ magnetic moments align ferromagnetically perpendicular to the c-axis below TC. In addition, a hump in the specific heat is observed around 7 K, which can be ascribed to the Zeeman splitting of the Eu2+ multiplet by internal magnetic fields.  相似文献   

14.
We have investigated the differential conductance spectra of the point contacts between the heavy-fermion superconductor CeCoIn5 and Pt. Many of them show a double-maximum structure that indicates the superconducting energy gap Δ. The Δ values derived using Blonder-Tinkham-Klapwijk model, however, varies from 0.47 to 0.77 meV, and yet they are within the scatter of the reported values. The evolution of Δ below Tc is slow as compared with that of BCS gap probably reflecting the unconventional superconductivity in CeCoIn5.  相似文献   

15.
Analysis of the Tsallis q-triplet for the variability of El Niño Southern Oscillation (ENSO) index during the Holocene epoch (last 11,000 years) is presented. Three periods are analyzed, 0-7000, 7000-9700, 9700-11,000 years before the present. During the first and the third periods, the q-index values have the expected usual relations between them (qsens<1<qstat<qrel), and in the second one there is an inversion between qstat and qrel (qstat>qrel).  相似文献   

16.
Since the energy of a reactor neutrino is a few MeV, all , and oscillations are accessible by reactor neutrino experiments. KamLAND observed the oscillation and currently Double Chooz, RENO and Dayabay experiments are under construction aiming to detect oscillation. There are still good prospects for future reactor neutrino experiments after them. For example, there is room to further improve sin22θ13 accuracy at a baseline of ∼1.5 km, a very precise sin22θ12 measurement and the determination of mass hierarchy may be possible at a baseline ∼50 km, and if KamLAND is enlarged to the SuperKamiokande size, better measurement of and sin22θ12 will be anticipated. It is important to take into account such possibilities when planning future neutrino program after θ13 is measured by current experiments.  相似文献   

17.
We present a new information theoretic approach for network characterizations. It is developed to describe the general type of networks with n nodes and L directed and weighted links, i.e., it also works for the simpler undirected and unweighted networks. The new information theoretic measures for network characterizations are based on a transmitter-receiver analogy of effluxes and influxes. Based on these measures, we classify networks as either complex or non-complex and as either democracy or dictatorship networks. Directed networks, in particular, are furthermore classified as either information spreading and information collecting networks.The complexity classification is based on the information theoretic network complexity measure medium articulation (MA). It is proven that special networks with a medium number of links (Ln1.5) show the theoretical maximum complexity . A network is complex if its MA is larger than the average MA of appropriately randomized networks: MA>MAr. A network is of the democracy type if its redundancy R<Rr, otherwise it is a dictatorship network. In democracy networks all nodes are, on average, of similar importance, whereas in dictatorship networks some nodes play distinguished roles in network functioning. In other words, democracy networks are characterized by cycling of information (or mass, or energy), while in dictatorship networks there is a straight through-flow from sources to sinks. The classification of directed networks into information spreading and information collecting networks is based on the conditional entropies of the considered networks (H(A/B)=uncertainty of sender node if receiver node is known, H(B/A)=uncertainty of receiver node if sender node is known): if H(A/B)>H(B/A), it is an information collecting network, otherwise an information spreading network.Finally, different real networks (directed and undirected, weighted and unweighted) are classified according to our general scheme.  相似文献   

18.
Recent works on scanning tunneling microscopy (STM) have shown how the measured local gaps vary in a Bi2212 family of samples with different hole doping levels and also, how they vary with the temperature. Here we use the Cahn-Hilliard (CH) equation of phase segregation in alloys to describe the phase separations of holes in HTS. This method allows us to determine how the local Landau free energy changes in a given sample as a function of temperature, assuming that the line of anomalies or signals related with the upper pseudogap is the phase separation temperature Tps. The free energy and the hole density form regions of low and high values separated by a potential barrier, which we propose to be the origin of the superconducting attraction.  相似文献   

19.
An enhanced nonlinear current-voltage behavior has been observed in Au nanoparticle dispersed CaCu3Ti4O12 composite films. The double Schottky barrier model is used to explain the enhanced nonlinearity in I-V curves. According to the energy-band model and fitting result, the nonlinearity in Au: CCTO film is mainly governed by thermionic emission in the reverse-biased Schottky barrier. This result not only supports the mechanism of double Schottky barrier in CCTO, but also indicates that the nonlinearity of current-voltage behavior could be improved in nanometal composite films, which has great significance for the resistance switching devices.  相似文献   

20.
We study some analytical properties of the solutions of the non-perturbative renormalization group flow equations for a scalar field theory with Z2 symmetry in the ordered phase, i.e. at temperatures below the critical temperature. The study is made in the framework of the local potential approximation. We show that the required physical discontinuity of the magnetic susceptibility χ(M) at MM0 (M0 spontaneous magnetization) is reproduced only if the cut-off function which separates high and low energy modes satisfies to some restrictive explicit mathematical conditions; we stress that these conditions are not satisfied by a sharp cut-off in dimensions of space d<4.By generalizing a method proposed earlier by Bonanno and Lacagnina [Nucl. Phys. B 693 (2004) 36] to any kind of cut-off we propose to solve numerically the renormalization group flow equations for the threshold functions rather than for the local potential. It yields an algorithm sufficiently robust and precise to extract universal as well as non-universal quantities from numerical experiments at any temperature, in particular at sub-critical temperatures in the ordered phase. Numerical results obtained for the φ4 potential with three different cut-off functions are reported and compared. The data confirm our theoretical predictions concerning the analytical behavior of χ(M) at MM0.Fixed point solutions of the adimensioned renormalization group flow equations are also obtained in the same vein, that is by solving the fixed points equations and the associated eigenvalue problem for the threshold functions rather than for the potential. We report high precision data for the odd and even spectra of critical exponents for different cut-offs obtained in this way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号