首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A criterion of ductile fracture is proposed, which takes into account the singular character of theoretical solutions near the maximum friction surfaces and the emergence of a thin layer with intense plastic strains near surfaces with high friction stresses in real processes of metal forming. The equation for the thickness of the layer with intense plastic strains and the fracture criterion include the strain rate intensity factor, apparently, characterizing the intensity of physical processes that occur in a thin material layer near the friction surfaces. Some experimental data are used to determine the thickness of this layer. The ductile fracture criterion is analyzed by solving the problem of strip extrusion under conditions of plane strain deformation.  相似文献   

2.
The problem of determining the stress-strain state of an elastic plane with a physical cut loaded by an antisymmetric system of forces is posed and solved under the condition that the tangential stresses are homogeneous across the thickness of the layer continuing the cut.  相似文献   

3.
The vibration and buckling characteristics of sandwich plates having laminated stiff layers are studied for different degrees of imperfections at the layer interfaces using a refined plate theory. With this plate theory, the through thickness variation of transverse shear stresses is represented by piece-wise parabolic functions where the continuity of these stresses is satisfied at the layer interfaces by taking jumps in the transverse shear strains at the interfaces. The transverse shear stresses free condition at the plate top and bottom surfaces is also satisfied. The inter-laminar imperfections are represented by in-plane displacement jumps at the layer interfaces and characterized by a linear spring layer model. It is quite interesting to note that this plate model having all these refined features requires unknowns only at the reference plane. To have generality in the analysis, finite element technique is adopted and it is carried out with a new triangular element developed for this purpose, as any existing element cannot model this plate model. As there is no published result on imperfect sandwich plates, the problems of perfect sandwich plates and imperfect ordinary laminates are used for validation.  相似文献   

4.
5.
We consider a plane problem of propagation of unsteady waves in a plane layer of constant thickness filled with a homogeneous linearly elastic isotropic medium in the absence of mass forces and with zero initial conditions. We assume that, on one of the layer boundaries, the normal stresses are given in the form of the Dirac delta function, the tangential stresses are zero, and the second boundary is rigidly fixed. The problem is solved by using the Laplace transform with respect to time and the Fourier transform with respect to the longitudinal coordinate. The normal displacements at an arbitrary point are obtained in the form of finite sums.  相似文献   

6.
A simulation model is presented for the creep process of the rotating disks under the radial pressure in the presence of body forces. The finite strain theory is applied. The material is described by the Norton-Bailey law generalized for true stresses and logarithmic strains. A mathematical model is formulated in the form of a set of four partial differential equations with respect to the radial coordinate and time. Necessary initial and boundary conditions are also given. To make the model complete, a numerical procedure is proposed. The given example shows the effectiveness of this procedure. The results show that the classical finite element method cannot be used here because both the geometry and the loading (body forces) change with the time in the creep process, and the finite elements need to be redefined at each time step.  相似文献   

7.
The problem of the beginning of motion of a cut in a plane under symmetric external loading is considered. The material lying on the cut continuation forms a layer (interaction layer). A transition to a plastic state within the layer is assumed to be possible. The behavior of the layer is described by an ideally elastoplastic model, and the plane outside the layer is assumed to be linearly elastic. A system of boundary integral equations for determining the stress-strain state is derived. Based on this system, a discrete model of separation of the layer material is constructed under the assumption of a constant stress-strain state in the element of the interaction layer. The distribution of stresses in the pre-fracture zone is determined. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 187–195, July–August, 2009  相似文献   

8.
A simply supported glass/polyvinyl butyral (PVB)/glass beam is modelled by plane finite elements. The distribution of strain and stress through the beam thickness and along its axis is obtained as a result of linear finite element analysis. It shows that the bending stress in the glass layers is determinant for the load-bearing capability of laminated glasses, but the shear in the PVB-interlayer plays an important role for glass-layer interaction. A mathematical model of triplex glass beam is derived, consisting of a bending curvature differential equation and a differential equation of PVB-interlayer shear interaction. The derived equations are solved analytically with boundary conditions of simply supported beam under uniform transverse load. A parametric study of the derived mathematical model is carried out. The model is utilized for lightweight structure optimization of layer thicknesses. The results of the optimization show that laminated glasses could be superior to monolithic glasses.  相似文献   

9.
10.
A problem of the development of a plastic zone in the vicinity of a physical cut in the plain strain and stress states is posed and solved on the basis of a discrete deformation model under the assumption of an ideal elastoplastic medium. The Tresca yield condition and the ultimate plasticity condition are used in studying the plane stress state. The dependence of the plastic zone length on the external load is compared with a similar dependence obtained on the basis of the Leonov-Panasyuk-Dugdale model. In contrast to the Leonov-Panasyuk-Dugdale model, the distributions of stresses and lengths of plastic zones in the plane strain and stress states are found to be substantially different if elastic compressibility and compressive-tensile stresses along the cut direction are taken into account.  相似文献   

11.
Features of the propagation of longitudinal and transverse plane waves along the layers of nanocomposites with process-induced initial stresses are studied. The composite has a periodic structure: it is made by repeating two highly dissimilar layers. The layers exhibit nonlinear elastic behavior in the range of loads under consideration. A Murnaghan-type elastic potential dependent on the three invariants of the strain tensor is used to describe the mechanical behavior of the composite constituents. To simulate the propagation of waves, finite-strain theory is used for developing a problem statement within the framework of the three-dimensional linearized theory of elasticity assuming finite initial strains. The dependence of the relative velocities of longitudinal and transverse waves on two components of small initial stresses in each layer and on the volume fraction of the constituents is studied. It is established that there are thickness ratios of layers in some nanocomposites such that the wave velocities are independent of the initial stresses and equal to the respective wave velocities in composites without initial stresses __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 4, pp. 3–26, April 2007.  相似文献   

12.
In this article, nonlinear free vibration behavior of laminated composite shallow shell under uniform temperature load is investigated. The mid-plane kinematics of the laminated shell is evaluated based on higher order shear deformation theory to count the out of plane shear stresses and strains accurately. The nonlinearity in geometry is taken in Green-Lagrange sense due to the thermal load. In addition to that, all the nonlinear higher order terms are taken in the mathematical model to capture the original flexure of laminated panel. A nonlinear finite element model is proposed to discretise the developed model and the governing equations are derived using Hamilton’s principle. The sets of governing equations are solved using a direct iterative method. In order to validate the model, the results are compared with the available published literature and the limitations of the existing models have been discussed. Finally, some numerical experimentation has been done using the developed nonlinear model for different parameters (thickness ratio, curvature ratio, modular ratio, support condition, lamination scheme, amplitude ratio and thermal expansion coefficient) and their effects on the responses are discussed in detail.  相似文献   

13.
层状弹性材料包含垂直于界面有限裂纹时,可运用富里叶变换及引用位错密度函数,导出了反映裂纹尖端奇异性的奇异积分方程组,并使用Lobatto-chebyshev方法解此方程组,最后得到裂纹尖端应力强度因子,为检验方法的正确性,对某两层含裂实际结构进行了计算,结果是满意的。  相似文献   

14.
本文采用Williams特征展开方法结合Lee伪应力函数方法得到了平面应变状态下不可压缩幂硬化蠕变材料中刚性片状夹杂物的奇异场和局部解.研究发现,夹杂物尖端的应力奇性为r~(-m/2),与幂硬化指数m有关;而应变奇性为r~(-1/2),与幂硬化指数无关.本文通过选择积分路径给出了近尖的局部解,并用显函数的形式给出了近尖应力和位移的角变化.  相似文献   

15.
The elastoplastic state of thin cylindrical shells weakened by a curvilinear (circular) hole is analyzed considering finite deflections. The shells are made of an isotropic homogeneous material. The load is internal pressure of given intensity. The distributions of stresses (strains, displacements) along the hole boundary and in the zone of their concentration are studied. The results obtained are compared with solutions that account for physical (plastic strains) or geometrical (finite deflections) nonlinearity alone and with a numerical linear elastic solution. The stress-strain state around a circular hole is analyzed for different geometries in the case where both nonlinearities are taken into account __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 12, pp. 115–123, December, 2006.  相似文献   

16.
This paper deals with the determination of the thermo-elastic displacements and stresses in a multi-layered body set up in different layers of different thickness having different elastic properties due to the application of heat and a concentrated load in the uppermost surface of the medium. Each layer is assumed to be made of homogeneous and isotropic elastic material. The relevant displacement components for each layer are taken to be axisymmetric about a line, which is perpendicular to the plane surfaces of all layers. The stress function for each layer, therefore, satisfies a single equation in absence of any body forces. The equation is then solved by integral transform technique. Analytical expressions for thermo-elastic displacements and stresses in the underlying mass and the corresponding numerical codes are constructed for any number of layers. However, the numerical comparison is made for three and four layers.  相似文献   

17.
A two-dimensional model has been developed for thermal stresses, elastic strains, creep strains, and creep energy density at the interfaces of short and long trilayer assemblies under both plane stress and plane strain conditions. Both linear (viscous) and non-linear creep constitutive behavior under static and cyclic thermal loading can be modeled for all layers. Interfacial stresses and strains are approximated using a combination of exact elasticity solutions and elementary strength of materials theories. Partial differential equations are linearized through a simple finite difference discretization procedure. The approach is mathematically straightforward and can be extended to include plastic behavior and problems involving external loads and a variety of geometries. The model can provide input data for thermal fatigue life prediction in solder or adhesive joints. For a typical solder joint, it is demonstrated that the predicted cyclic stress–strain hysteresis shows shakedown and a rapid stabilization of the creep energy dissipation per cycle in agreement with the predictions of finite element analysis.  相似文献   

18.
本文用有限元法和Fourier级数展开技术求解复合材料回转壳体在各种荷载作用下的弯曲问题,文中利用回转壳在几何上的轴对称性质,将各物理量在环向展开为Fourei级数,而在母线和壳厚方向分割单元,所采用的单元为6节点18自由度等参元,它考虑了剪切变形和挤压变形的影响,能计算厚度方向的挤压应力,数值算例表明,本文提出的单元性能优良,算法稳定收敛。  相似文献   

19.
本文首先将以前所得到的关于两个轴对称塑性平面应力问题(薄圆环和旋转盘)的有关方程和计算结果作了一个简单的叙述.这些计算结果是根据两种不同硬化特性的材料和一种理想塑性材料的应力应变曲线在不同负荷下计算得到的.这些结果指出这三种不同材料的应力应变曲线和负荷对于这两个问题的主应力比值和比例应变的影响很小,而对于比例应力的影响则很大.之后,分析了二维的塑性平面应力问题的方程;这些方程考虑了大应变,但不包括体积力(body force).分析这些方程中的包括材料应力应变曲线项和载荷数项的结果,认为假若在边界上的主应力的比值和比例应变不变,则材料的应力应变曲线和载荷对于主应力比值和比例应变的分布的影响可能不大,而对于比例应力的影响则很大.这种边界条件在实际问题中的普通加减下,满足的可能想是很大的.薄圆环和旋转盘的边界条件及所得的结果和这分析的结果是完全一致的.从这些结果并可提出一个简单而相当准确的近似解,最后并将本文所得的结果和依留辛(Ильюшии)的理论——关于小应变下三维问题形变理论的应用条件——作了比较.  相似文献   

20.
A mathematical model of crack nucleation in a strip of varying thickness under force loading is constructed. It is assumed that the loading of the strip by external forces gives rise to prefracture zones, which are modeled as regions of weakened interparticle bonds in the material. Solution of the problem of the equilibrium of an isotropic strip of varying thickness, with a crack nucleus reduces to solving a system of nonlinear singular integral equations with a Cauchy type kernel to determine the forces in the region of crack nucleation. The condition of crack nucleation in a strip of varying thickness is formulated using the criterion of the limiting stretching of material bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号