首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The extraction of sinusoidal signals from time-series data is a classic problem of ongoing interest in the statistics and signal processing literatures. Obtaining least squares estimates is difficult because the sum of squares has local minima O(1/n) apart in the frequencies. In practice the frequencies are often estimated using ad hoc and inefficient methods. Problems of data quality have received little attention. An elemental set is a subset of the data containing the minimum number of points such that the unknown parameters in the model can be identified. This article shows that, using a variant of the classical method of Prony, parameter estimates for a sum of sinusoids can be obtained algebraically from an elemental set. Elemental set methods are used to construct finite algorithm estimators that approximately minimize the least squares, least trimmed sum of squares, or least median of squares criteria. The elemental set estimators prove able in simulations to resolve the frequencies to the correct local minima of the objective functions. When used as the first stage of an MM estimator, the constructed estimators based on the trimmed sum of squares and least median of squares criteria produce final estimators which have high breakdown properties and which are simultaneously efficient when no outliers are present. The approach can also be applied to sums of exponentials, and sums of damped sinusoids. The article includes simulations with one and two sinusoids and two data examples.  相似文献   

2.
In this study, we present an approach based on neural networks, as an alternative to the ordinary least squares method, to describe the relation between the dependent and independent variables. It has been suggested to construct a model to describe the relation between dependent and independent variables as an alternative to the ordinary least squares method. A new model, which contains the month and number of payments, is proposed based on real data to determine total claim amounts in insurance as an alternative to the model suggested by Rousseeuw et al. (1984) [Rousseeuw, P., Daniels, B., Leroy, A., 1984. Applying robust regression to insurance. Insurance: Math. Econom. 3, 67–72] in view of an insurer.  相似文献   

3.
This paper extends prior work by the authors on solving nonlinear least squares unconstrained problems using a factorized quasi-Newton technique. With this aim we use a primal-dual interior-point algorithm for nonconvex nonlinear programming. The factorized quasi-Newton technique is now applied to the Hessian of the Lagrangian function for the transformed problem which is based on a logarithmic barrier formulation. We emphasize the importance of establishing and maintaining symmetric quasi-definiteness of the reduced KKT system. The algorithm then tries to choose a step size that reduces a merit function, and to select a penalty parameter that ensures descent directions along the iterative process. Computational results are included for a variety of least squares constrained problems and preliminary numerical testing indicates that the algorithm is robust and efficient in practice.  相似文献   

4.
Some new perturbation results are presented for least squares problems with equality constraints, in which relative errors are obtained on perturbed solutions, least squares residuals, and vectors of Lagrange multipliers of the problem, based on the equivalence of the problem to a usual least squares problem and optimal perturbation results for orthogonal projections.  相似文献   

5.
We propose a sparse approximate inverse preconditioner based on the Sherman-Morrison formula for Tikhonov regularized least square problems. Theoretical analysis shows that, the factorization method can take the advantage of the symmetric property of the coefficient matrix and be implemented cheaply. Combined with dropping rules, the incomplete factorization leads to a preconditioner for Krylov iterative methods to solve regularized least squares problems. Numerical experiments show that our preconditioner is competitive compared to existing methods, especially for ill-conditioned and rank deficient least squares problems.  相似文献   

6.
线性流形上D对称矩阵反问题的最小二乘解   总被引:3,自引:0,他引:3  
本研究了线性流形上D对称矩阵反问的最小二乘解及其逼近问题,给出了最小二乘解的一般表达式,并就该问题的特殊情况-矩阵反问题,获得了有解的充分必要条件,并在有解的条件下得到了解的一段表达式。  相似文献   

7.
Maximum likelihood methods are important for system modeling and parameter estimation. This paper derives a recursive maximum likelihood least squares identification algorithm for systems with autoregressive moving average noises, based on the maximum likelihood principle. In this derivation, we prove that the maximum of the likelihood function is equivalent to minimizing the least squares cost function. The proposed algorithm is different from the corresponding generalized extended least squares algorithm. The simulation test shows that the proposed algorithm has a higher estimation accuracy than the recursive generalized extended least squares algorithm.  相似文献   

8.
The paper addresses bivariate surface fitting problems, where data points lie on the vertices of a rectangular grid. Efficient and stable algorithms can be found in the literature to solve such problems. If data values are missing at some grid points, there exists a computational method for finding a least squares spline by fixing appropriate values for the missing data. We extended this technique to arbitrary least squares problems as well as to linear least squares problems with linear equality constraints. Numerical examples are given to show the effectiveness of the technique presented. AMS subject classification (2000)  65D05, 65D07, 65D10, 65F05, 65F20  相似文献   

9.
ON THE ACCURACY OF THE LEAST SQUARES AND THE TOTAL LEAST SQUARES METHODS   总被引:1,自引:0,他引:1  
Consider solving an overdetermined system of linear algebraic equations by both the least squares method (LS) and the total least squares method (TLS). Extensive published computational evidence shows that when the original system is consistent. one often obtains more accurate solutions by using the TLS method rather than the LS method. These numerical observations contrast with existing analytic perturbation theories for the LS and TLS methods which show that the upper bounds for the LS solution are always smaller than the corresponding upper bounds for the TLS solutions. In this paper we derive a new upper bound for the TLS solution and indicate when the TLS method can be more accurate than the LS method.Many applied problems in signal processing lead to overdetermined systems of linear equations where the matrix and right hand side are determined by the experimental observations (usually in the form of a lime series). It often happens that as the number of columns of the matrix becomes larger, the ra  相似文献   

10.
The importance of optimizing machine learning control parameters has motivated researchers to investigate for proficient optimization techniques. In this study, a Swarm Intelligence approach, namely artificial bee colony (ABC) is utilized to optimize parameters of least squares support vector machines. Considering critical issues such as enriching the searching strategy and preventing over fitting, two modifications to the original ABC are introduced. By using commodities prices time series as empirical data, the proposed technique is compared against two techniques, including Back Propagation Neural Network and by Genetic Algorithm. Empirical results show the capability of the proposed technique in producing higher prediction accuracy for the prices of interested time series data.  相似文献   

11.
For solving least squares problems, the CGLS method is a typical method in the point of view of iterative methods. When the least squares problems are ill-conditioned, the convergence behavior of the CGLS method will present a deteriorated result. We expect to select other iterative Krylov subspace methods to overcome the disadvantage of CGLS. Here the GMRES method is a suitable algorithm for the reason that it is derived from the minimal residual norm approach, which coincides with least squares problems. Ken Hayami proposed BAGMRES for solving least squares problems in [\emph{GMRES Methods for Least Squares Problems, SIAM J. Matrix Anal. Appl., 31(2010)}, pp.2400-2430]. The deflation and balancing preconditioners can optimize the convergence rate through modulating spectral distribution. Hence, in this paper we utilize preconditioned iterative Krylov subspace methods with deflation and balancing preconditioners in order to solve ill-conditioned least squares problems. Numerical experiments show that the methods proposed in this paper are better than the CGLS method.  相似文献   

12.
The standard approaches to solving an overdetermined linear system Ax ≈ b find minimal corrections to the vector b and/or the matrix A such that the corrected system is consistent, such as the least squares (LS), the data least squares (DLS) and the total least squares (TLS). The scaled total least squares (STLS) method unifies the LS, DLS and TLS methods. The classical normwise condition numbers for the LS problem have been widely studied. However, there are no such similar results for the TLS and the STLS problems. In this paper, we first present a perturbation analysis of the STLS problem, which is a generalization of the TLS problem, and give a normwise condition number for the STLS problem. Different from normwise condition numbers, which measure the sizes of both input perturbations and output errors using some norms, componentwise condition numbers take into account the relation of each data component, and possible data sparsity. Then in this paper we give explicit expressions for the estimates of the mixed and componentwise condition numbers for the STLS problem. Since the TLS problem is a special case of the STLS problem, the condition numbers for the TLS problem follow immediately from our STLS results. All the discussions in this paper are under the Golub-Van Loan condition for the existence and uniqueness of the STLS solution. Yimin Wei is supported by the National Natural Science Foundation of China under grant 10871051, Shanghai Science & Technology Committee under grant 08DZ2271900 and Shanghai Education Committee under grant 08SG01. Sanzheng Qiao is partially supported by Shanghai Key Laboratory of Contemporary Applied Mathematics of Fudan University during his visiting.  相似文献   

13.
For ARX-like systems, this paper derives a bias compensation based recursive least squares identification algorithm by means of the prefilter idea and bias compensation principle. The proposed algorithm can give the unbiased estimates of the system model parameters in the presence of colored noises, and can be on-line implemented. Finally, the advantages of the proposed bias compensation recursive least squares algorithm are shown by simulation tests.  相似文献   

14.
Numerical and computational aspects of direct methods for largeand sparseleast squares problems are considered. After a brief survey of the most oftenused methods, we summarize the important conclusions made from anumerical comparison in matlab. Significantly improved algorithms haveduring the last 10-15 years made sparse QR factorization attractive, andcompetitive to previously recommended alternatives. Of particular importanceis the multifrontal approach, characterized by low fill-in, dense subproblemsand naturally implemented parallelism. We describe a Householder multifrontalscheme and its implementation on sequential and parallel computers. Availablesoftware has in practice a great influence on the choice of numericalalgorithms. Less appropriate algorithms are thus often used solely because ofexisting software packages. We briefly survey softwarepackages for the solution of sparse linear least squares problems. Finally,we focus on various applications from optimization, leading to the solution oflarge and sparse linear least squares problems. In particular, we concentrateon the important case where the coefficient matrix is a fixed general sparsematrix with a variable diagonal matrix below. Inner point methods forconstrained linear least squares problems give, for example, rise to suchsubproblems. Important gains can be made by taking advantage of structure.Closely related is also the choice of numerical method for these subproblems.We discuss why the less accurate normal equations tend to be sufficient inmany applications.  相似文献   

15.
For modeling multi-phase where the dispersed phase plays a major role in determining the flow structure and inter phase transfer quantities, the size distribution of the bubbles has to be considered. This can be done by extension of the mass balance equation to a population balance equation. In this work, a least squares spectral method is tested for predicting the evolution of the dispersed phase in a vertical two-phase bubbly flow. The least squares spectral method consists in minimizing the L2 norm of the residual over the simulation domain. The results are compared with experimental data obtained for two different initial bubble distributions.  相似文献   

16.
In a total least squares (TLS) problem, we estimate an optimal set of model parameters X, so that (AA)X=BB, where A is the model matrix, B is the observed data, and ΔA and ΔB are corresponding corrections. When B is a single vector, Rao (1997) and Paige and Strakoš (2002) suggested formulating standard least squares problems, for which ΔA=0, and data least squares problems, for which ΔB=0, as weighted and scaled TLS problems. In this work we define an implicitly-weighted TLS formulation (ITLS) that reparameterizes these formulations to make computation easier. We derive asymptotic properties of the estimates as the number of rows in the problem approaches infinity, handling the rank-deficient case as well. We discuss the role of the ratio between the variances of errors in A and B in choosing an appropriate parameter in ITLS. We also propose methods for computing the family of solutions efficiently and for choosing the appropriate solution if the ratio of variances is unknown. We provide experimental results on the usefulness of the ITLS family of solutions.  相似文献   

17.
We propose a method for estimating nonstationary spatial covariance functions by representing a spatial process as a linear combination of some local basis functions with uncorrelated random coefficients and some stationary processes, based on spatial data sampled in space with repeated measurements. By incorporating a large collection of local basis functions with various scales at various locations and stationary processes with various degrees of smoothness, the model is flexible enough to represent a wide variety of nonstationary spatial features. The covariance estimation and model selection are formulated as a regression problem with the sample covariances as the response and the covariances corresponding to the local basis functions and the stationary processes as the predictors. A constrained least squares approach is applied to select appropriate basis functions and stationary processes as well as estimate parameters simultaneously. In addition, a constrained generalized least squares approach is proposed to further account for the dependencies among the response variables. A simulation experiment shows that our method performs well in both covariance function estimation and spatial prediction. The methodology is applied to a U.S. precipitation dataset for illustration. Supplemental materials relating to the application are available online.  相似文献   

18.
We consider a class of estimation problems in which data of a Poisson character are related by a linear model to a target function that satisfies certain physical constraints. The classic example of this situation is the reconstruction problem of positron emission tomography (PET). There the function of interest satisfies positivity constraints. This article examines the impact of such constraints by comparing simple unconstrained reconstruction methods with constrained alternatives based on maximum likelihood (ML) and least squares (LS) formulations. Data from a series of numerical experiments are presented to quantify the significance of constraints. Although these experiments show that constraints are important, the differences between ML and LS based implementations of constraints are quite small. Thus, in order to evaluate the impact of constraints, it appears to be sufficient to focus on comparing constrained versus unconstrained implementations of LS. This simplifies the analysis of constraints considerably. A perturbation analysis technique is proposed to summarize the impact of constraints in terms of a single relative efficiency measure. The predictions obtained by this analysis are found to be in good agreement with experimental data.  相似文献   

19.
本文利用最小二乘的L-M方法建立了关于地基土工参数的优化计算模型,并基于MATLAB得出计算结果.从而证明利用最小二乘法可有效地获取土工参数.  相似文献   

20.
A variant of the preconditioned conjugate gradient method to solve generalized least squares problems is presented. If the problem is min (Axb)TW−1(Axb) with ARm×n and WRm×m symmetric and positive definite, the method needs only a preconditioner A1Rn×n, but not the inverse of matrix W or of any of its submatrices. Freund's comparison result for regular least squares problems is extended to generalized least squares problems. An error bound is also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号