首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The previously unknown heteropolyoxometalates [gamma-SiO(4)W(10)O(32)(OH)Cr(2)(OOCR)(2)(OH(2))(2)](5-) (R = H, CH(3)) have been prepared by the reaction of [gamma-SiO(4)W(10)O(32)](8-) with [Cr(OH(2))(6)](3+) in formate or acetate buffer solution. Isolation of these new Cr(III)-substituted polyoxometalates was accomplished both as Cs(+) salts and as the Bu(4)N(+) salt for the acetate-containing anion. The compounds were characterized by elemental analysis, UV/vis, IR, and ESR spectroscopy, and cyclic voltammetry. The single-crystal X-ray structural analysis of (Bu(4)N)(3)H(2)[gamma-SiO(4)W(10)O(32)(OH)Cr(2)(OOCCH(3))(2)(OH(2))(2)].3H(2)O [P2(1)2(1)2(1); a = 17.608(12), b = 20.992(13), c = 24.464(11) ?; Z = 4; R = 0.057 for 6549 observed independent reflections] reveals that the two corner-linked CrO(6) octahedra are additionally bridged by two acetate groups, demonstrating the relationship to the well-studied oxo-centered trinuclear carboxylato complexes of Cr(III).  相似文献   

2.
Comparative studies on the voltammetric reduction of the alpha and gamma isomers of Dawson [S(2)W(18)O(62)](4)(-) and alpha, beta, and gamma forms of Keggin [SiW(12)O(40)](4)(-) polyoxometalate anions have been undertaken. For the six reversible one-electron [S(2)W(18)O(62)](4)(-)(/5)(-)(/6)(-)(/7)(-)(/8)(-)(/9)(-)(/10)(-) processes in acetonitrile, reversible potentials (E(0)(')) were found to be independent of isomeric form within experimental error (+/-5 mV). However, because both the alpha and gamma* isomers of [Bu(4)N](4)[S(2)W(18)O(62)] are insoluble in water, solid-state voltammetric studies with microcrystals adhered to electrode surfaces in contact with aqueous Et(4)NCl and Bu(4)NCl electrolyte media were also possible. Although no isomeric distinction was again detected in the solid-state studies, it was found that reduction of adhered solid by four or more electron equivalents led to rapid dissolution. When Et(4)NCl was the electrolyte, this dissolution process coupled with potential cycling experiments enabled conventional solution-phase data to be obtained in water for the analogous six one-electron reduction steps previously detected in acetonitrile. A strong medium effect attributed to Lewis acidity effects was apparent upon comparison with E(0)(') data obtained in water and acetonitrile. In contrast, with the [SiW(12)O(40)](4)(-) system, E(0)(') values for the [SiW(12)O(40)](4)(-)(/5)(-)(/6)(-)(/7)(-) processes in acetonitrile exhibited a larger (about 70 mV) dependence on isomeric form, and the isomerization step, [gamma-SiW(12)O(40)](6)(-)--> [alpha-SiW(12)O(40)](6)(-), was detected on the voltammetric time scale. The influence of isomeric form on reversible potential data is considered in terms of structural and charge density differences exhibited in the [S(2)W(18)O(62)](4)(-) and [SiW(12)O(40)](4)(-) systems studied in this paper and published data available on the alpha, beta, gamma, and gamma isomers of [As(2)W(18)O(62)](6)(-) and [P(2)W(18)O(62)](6)(-) Dawson anions and Keggin systems.  相似文献   

3.
The ammonium salt of the 1:1complex (1) of Ce(III) with alpha(1)-[P(2)W(17)O(61)](10)(-) was prepared and characterized by elemental analysis, vibrational and NMR spectroscopy ((31)P, (183)W), cyclic voltammetry, and single-crystal X-ray analysis (P1; a = 15.8523(9) A, b = 17.4382(10) A, c = 29.3322(16) A, alpha = 99.617(1) degrees, beta = 105.450 (1) degrees, gamma = 101.132(1) degrees, V = 7460.9(7) A(3), Z = 2). The anion consists of a centrosymmetric head-to-head dimer, [[Ce(H(2)O)(4)(P(2)W(17)O(61))](2)],(14-) with each 9-coordinate Ce cation linked to four oxygens of one tungstophosphate anion and to one oxygen of the other anion. On the basis of P NMR spectroscopy, a monomer-dimer equilibrium exists in solution with K = 20 +/- 4 M(-1) at 22 degrees C. Addition of chiral amino acids to aqueous solutions of 1 results in splitting of the (31)P NMR signals as a result of diastereomer formation. No such splitting is observed with glycine or DL-proline, or when chiral amino acids are added to the corresponding complex of the achiral alpha(2)-isomer of [P(2)W(17)O(61)](10)(-). From analysis of the (31)P NMR spectra, formation constants of the two diastereomeric adducts of 1 with L-proline are 7.3 +/- 1.3 and 9.8 +/- 1.4 M(-1).  相似文献   

4.
Lanthanide complexes of the chiral Dawson phosphotungstate [alpha(1)-P(2)W(17)O(61)](10-) were used to study the formation of diastereomers with optically pure organic ligands. The present work started with the full assignment of the (183)W NMR spectra of [alpha(1)-Yb(H(2)O)(4)P(2)W(17)O(61)](7-) at different temperatures and concentrations, which allowed the structure of the dimerized form in aqueous solution to be established. Different enantiopure amino acids and phosphonic acids were screened as ligands. Both types allowed chiral differentiation by multinuclear NMR spectroscopy under fast-exchange conditions. Functional groups with a good affinity for the oxo framework of the polyoxometalate were identified, and maps of the interactions between L-serine and N-phosphonomethyl-L-proline with [alpha(1)-Yb(H(2)O)(4)P(2)W(17)O(61)](7-) were established. This demonstrates the power of (183)W NMR spectroscopy to elucidate the molecular recognition of inorganic molecules by organic compounds. N-Phosphonomethyl-L-proline appears to be a convenient ligand to promote separation of the diastereomers and ultimately resolution of the enantiomers of [alpha(1)-Yb(H(2)O)(4)P(2)W(17)O(61)](7-).  相似文献   

5.
A kinetic study of [OsO(4)] reduction by aliphatic alcohols (MeOH and EtOH) was performed in a 2.0 M NaOH matrix at 298.1 K. The rate model that best fitted the UV-VIS data supports a one-step, two electron reduction of Os(VIII) (present as both the [Os(VIII)O(4)(OH)](-) and cis-[Os(VIII)O(4)(OH)(2)](2-) species in a ratio of 0.34:0.66) to form the trans-[Os(VI)O(2)(OH)(4)](2-) species. The formed trans-[Os(VI)O(2)(OH)(4)](2-) species subsequently reacts relatively rapidly with the cis-[Os(VIII)O(4)(OH)(2)](2-) complex anion to form a postulated [Os(VII)O(3)(OH)(3)](2-) species according to: cis-[Os(VIII)O(4)(OH)(2)](2-) + trans-[Os(VI)O(2)(OH)(4)](2-) (k+2) (k-2) 2[Os(VII)O(3)(OH)(3)](2-). The calculated forward, k(+2), and reverse, k(-2), reaction rate constants of this comproportionation reaction are 620.9 ± 14.6 M(-1) s(-1) and 65.7 ± 1.2 M(-1) s(-1) respectively. Interestingly, it was found that the postulated [Os(VII)O(3)(OH)(3)](2-) complex anion does not oxidize MeOH or EtOH. Furthermore, the reduction of Os(VIII) with MeOH or EtOH is first order with respect to the aliphatic alcohol concentration. In order to corroborate the formation of the [Os(VII)O(3)(OH)(3)](2-) species predicted with the rate model simulations, several Os(VIII)/Os(VI) mole fraction and mole ratio titrations were conducted in a 2.0 M NaOH matrix at 298.1 K under equilibrium conditions. These titrations confirmed that the cis-[Os(VIII)O(4)(OH)(2)](2-) and trans-[Os(VI)O(2)(OH)(4)](2-) species react in a 1:1 ratio with a calculated equilibrium constant, K(COM), of 9.3 ± 0.4. The ratio of rate constants k(+2) and k(-2) agrees quantitatively with K(COM), satisfying the principle of detailed balance. In addition, for the first time, the molar extinction coefficient spectrum of the postulated [Os(VII)O(3)(OH)(3)](2-) complex anion is reported.  相似文献   

6.
The reaction of two equiv of the monomeric ether-phosphine O,P ligand (MeO)(3)Si(CH(2))(3)(Ph)PCH(2)-Do [1a(T(0)()), 1b(T(0)())] {Do = CH(2)OCH(3) [1a(T(0)())], CHCH(2)CH(2)CH(2)O [1b(T(0)())]} with PdCl(2)(COD) yields the monomeric palladium(II) complexes Cl(2)Pd(P approximately O)(2) [2a(T(0)())(2)(), 2b(T(0)())(2)()]. The compounds 2a(T(0)())(2)() and 2b(T(0)())(2)() are sol-gel processed with variable amounts (y) of Si(OEt)(4) (Q(0)()) to give the polysiloxane-bound complexes 2a(T(n)())(2)()(Q(k)())(y)(), 2b(T(n)())(2)()(Q(k)())(y)() (Table 1) {P approximately O = eta(1)-P-coordinated ether-phosphine ligand; for T(n)() and Q(k)(), y = number of condensed T type (three oxygen neighbors), Q type (four oxygen neighbors) silicon atoms; n and k = number of Si-O-Si bonds; n = 0-3; k = 0-4; 2a(T(n)())(2)()(Q(k)())(y)(), 2b(T(n)())(2)()(Q(k)())(y)() = {[M]-SiO(n)()(/2)(OX)(3)(-)(n)()}(2)[SiO(k)()(/2)(OX)(4)(-)(k)()](y)(), [M] = (Cl(2)Pd)(1/2)(Ph)P(CH(2)Do)(CH(2))(3)-, X = H, Me, Et}. The complexes 2b(T(n)())(2)()(Q(k)())(y)() (y = 4, 12, 36) show high activity and selectivity in the hydrogenation of 1-hexyne and tolan. The dicationic complexes [Pd(P&arcraise;O)(2)][SbF(6)](2) [3a(T(0)())(2)(), 3b(T(0)())(2)()] are formed by reacting Cl(2)Pd(P approximately O)(2) with 2 equiv of a silver salt {P&arcraise;O = eta(2)-O&arcraise;P-coordinated ether-phosphine ligand; 3a(T(0)())(2)(), 3b(T(0)())(2)() = [M]-SiOMe(3); [M] = {[Pd(2+)](1/)(2)P(Ph)(CH(2)CH(2)OCH(3))(CH(2))(3)-}{SbF(6)} (a), {[Pd(2+)](1/)(2)P(Ph)(CH(2)CHCH(2)CH(2)CH(2)O)(CH(2))(3)-}{SbF(6)} (b)}. Their polysiloxane-bound congeners 3a(T(n)())(2)(), 3b(T(n)())(2)() {[M]-SiO(n)()(/2)(OX)(3)(-)(n)} are obtained if a volatile, reversible bound ligand like acetonitrile is employed during the sol-gel process. The bis(chelate)palladium(II) complexes 3a(T(n)())(2)(), 3b(T(n)())(2)() are catalytic active in the solvent-free CO-ethene copolymerization, producing polyketones with chain lengths comparable to those obtained with chelating diphosphine ligands. The polysiloxane-bound palladium(0) complexes 5a(T(n)())(2)()(Q(k)())(4)(), 5b(T(n)())(2)()(Q(k)())(4)() {[M]-SiO(n)()(/)(2)(OX)(3)(-)(n)}(2)[SiO(k)()(/2)(OX)(4)(-)(k)](4), [M] = [(dba)Pd](1/)(2)P(Ph)(CH(2)Do)(CH(2))(3)-} undergo an oxidative addition reaction with iodobenzene in an interphase with formation of the complexes PhPd(I)(P approximately O)(2).4SiO(2) [6a(T(n)())(2)()(Q(k)())(4)(), 6b(T(n)())(2)()(Q(k)())(4)()] {[M]-SiO(n)()(/)(2)(OX)(3)(-)(n)](2)[SiO(k)()(/2)(OX)(4)(-)(k)](4), [M] = [PhPd(I)](1/2)P(Ph)(CH(2)Do)(CH(2))(3)-}, which insert carbon monoxide into the palladium-aryl bond even in the solid state.  相似文献   

7.
The preparation of the alpha-1 and alpha-2 isomers of the Wells-Dawson 17 tungsto derivatives by standard methods is accompanied by a significant proportion of the other isomer present as an impurity. In this study, the alpha-1 and alpha-2 isomers of [Zn(H(2)O)P(2)W(17)O(61)](8)(-) have been prepared in >98% purity by reacting isomerically pure K(9)Li[alpha-1-P(2)W(17)O(61)] and K(10)[alpha-2-P(2)W(17)O(61)], respectively, with ZnCl(2), while rigorously controlling the pH at 4.7. The molecules were isolated as potassium salts. For (183)W NMR and (31)P NMR characterization, both molecules were ion exchanged by cation-exchange chromatography, maintaining the pH at 4.7, to obtain the lithium salts. Removal of water and isolation of a solid sample of [alpha-1-Zn(H(2)O)P(2)W(17)O(61)](8)(-) was achieved by lyophilization at -40 degrees C. The chemical shift data from (31)P and (183)W NMR spectroscopy of the isolated [alpha-1-Zn(H(2)O)P(2)W(17)O(61)](8)(-) and [alpha-2-Zn(H(2)O)P(2)W(17)O(61)](8)(-) isomers are consistent with a mixture of the alpha-1 and alpha-2 isomers reported previously;(1) the molecules have the expected C(1) and C(s)() symmetry, respectively. The [alpha-1-Zn(H(2)O)P(2)W(17)O(61)](8)(-) isomer is stable in the pH range of 4.6-6 at temperatures <35 degrees C. Using the same ion exchange and lyophilization techniques, the lacunary [alpha-1-P(2)W(17)O(61)](10)(-) isomer was isolated as the lithium salt; characterization by (183)W NMR spectroscopy confirms the C(1) symmetry.  相似文献   

8.
An investigation of M(3)O(13) unit ("M(3) cap") isomerization in the classical polytungstodiphosphates alpha- and beta-P(2)W(18)O(62)(6)(-) has been undertaken because cap isomerism is an important and structurally well-studied phenomenon in many polyoxometalate families. The relative thermodynamic stabilities of the alpha (more stable) versus beta isomers were established both in the solid state by differential scanning calorimetry (4.36 +/- 0.64 kcal/mol) and in solution by (31)P NMR (3.80 +/- 0.57 kcal/mol). The isomerization of beta-P(2)W(18)O(62)(6)(-) to alpha-P(2)W(18)O(62)(6)(-), followed by (31)P NMR, has a bimolecular rate constant k(2) of 9.3 x 10(-)(1) M(-)(1) s(-)(1) at 343 K in pH 4.24 acetate buffer. Several lines of evidence establish the validity of suggestions in the literature that isomerization goes through a lacunary (defect) intermediate. First, the rate is proportional to [OH(-)]. Second, isomerization increases at higher ionic strengths, and a Debye-Hückel plot is consistent with a rate-limiting reaction between beta-P(2)W(18)O(62)(6)(-) and OH(-) (two species with a charge product of 6). Third, alkali-metal cations stabilize the bimolecular transition state (K(+) > Na(+) > Li(+)), consistent with recent ion-pairing studies in polyoxometalate systems. Fourth, the monovanadium-substituted products alpha(1)- and alpha(2)-P(2)VW(17)O(62)(7)(-) ((51)V NMR delta -554 ppm) form during isomerization in the presence of VO(2+). The known lacunary compounds (alpha(1)- and alpha(2)-P(2)W(17)O(61)(10)(-)) also react rapidly with the same vanadium precursor. Fifth, solvent studies establish that isomerization does not occur when OH(-) is absent. A mechanism is proposed involving attack of OH(-) on beta-P(2)W(18)O(62)(6)(-), loss of monomeric W(VI) from the M(3) (M(3)O(13)) terminal cap, isomerization of the resulting lacunary compound to alpha-P(2)W(17)O(61)(10)(-), and finally reaction of this species with monomeric W(VI) to form the thermodynamic and observed product, alpha-P(2)W(18)O(62)(6)(-).  相似文献   

9.
The three novel, multi-nickel-substituted heteropolytungstates [Ni(6)As(3)W(24)O(94)(H(2)O)(2)](17)(-) (1), [Ni(3)Na(H(2)O)(2)(AsW(9)O(34))(2)](11)(-) (2), and [Ni(4)Mn(2)P(3)W(24)O(94)(H(2)O)(2)](17)(-) (3) have been synthesized and characterized by IR, elemental analysis, electrochemistry, and magnetic studies. Single-crystal X-ray analysis was carried out on Na(16.5)Ni(0.25)[Ni(6)As(3)W(24)O(94)(H(2)O)(2)].54H(2)O, which crystallizes in the triclinic system, space group P1, with a = 17.450(4) A, b = 17.476(4) A, c = 22.232(4) A, alpha = 85.73(3) degrees, beta = 89.74(3) degrees, gamma = 84.33(3) degrees, and Z = 2, Na(11)[Ni(3)Na(H(2)O)(2)(AsW(9)O(34))(2)].30.5H(2)O, which crystallizes in the triclinic system, space group P1, with a = 12.228(2) A, b = 16.743(3) A, c = 23.342(5) A, alpha = 78.50(3) degrees, beta = 80.69(3) degrees, gamma = 78.66(3) degrees, and Z = 2, and Na(17)[Ni(4)Mn(2)P(3)W(24)O(94)(H(2)O)(2)].50.5H(2)O, which crystallizes in the monoclinic system, space group P2(1)/c, with a = 17.540(4) A, b = 22.303(5) A, c = 35.067(7) A, beta = 95.87(3) A, and Z = 4. Polyanion 1 consists of two B-alpha-(Ni(3)AsW(9)O(40)) Keggin moieties linked via a unique AsW(6)O(16) fragment, leading to a banana-shaped structure with C(2)(v)() symmetry. The mixed-metal tungstophosphate 3 is isostructural with 1. Polyanion 2 consists of two lacunary B-alpha-[AsW(9)O(34)](9)(-) Keggin moieties linked via three nickel(II) centers and a sodium ion. Electrochemical studies show that 1-3 exhibit a unique and reproducible voltammetric pattern and that all three compounds are stable in a large pH range. An investigation of the magnetic properties of 1-3 indicates that the exchange interactions within the trimetal clusters are ferromagnetic. However, for 1 and 3 intra- and intermolecular interactions between different trinuclear clusters are also present.  相似文献   

10.
Calculations employing density functional theory (Gaussian 98, B3LYP, LANL2DZ, 6-31G) have been undertaken to interrogate the factors influencing the metathesis reaction involving M-M, C-C, and M-C triple bonds for the model compounds M(2)(EH)(6), M(2)(EH)(6)(mu-C(2)H(2)), and [(HE)(3)M(tbd1;CH)](2), where M = Mo, W and E = O, S. Whereas in all cases the ethyne adducts are predicted to be enthalpically favored in the reactions between M(2)(EH)(6) compounds and ethyne, only when M = W and E = O is the alkylidyne product [(HO)(3)W(tbd1;CH)](2) predicted to be more stable than the alkyne adduct. For the reaction M(2)(EH)(6)(mu-C(2)H(2)) --> [(HE)(3)M(tbd1;CH)](2), the deltaG degrees values (kcal mol(-)(1)) are -6 (M = W, E = O), +5 (M = Mo, E = O), +18 (M = W, E = S), and +21 (M = Mo, E = S) and the free energies of activation are calculated to be deltaG() = +19 kcal mol(-)(1) (M = W, E = O) and +34 kcal mol(-)(1) (M = Mo, E = O), where the transition state involves an asymmetric bridged structure M(2)(OH)(4)(mu-OH)(2)(CH)(mu-CH) in which the C-C bond has broken; C.C = 1.89 and 1.98 A for W and Mo, respectively. These results are discussed in terms of the experimental observations of the reactions involving ethyne and the symmetrically substituted alkynes (RCCR, where R = Me, Et) with M(2)(O(t)()Bu)(6) and M(2)(O(t)()Bu)(2)(S(t)()Bu)(4) compounds, where M = Mo, W.  相似文献   

11.
Monolacunary polyoxotungstates [alpha(1)-P(2)W(17)O(61)](10-) and [alpha-PW(11)O(39)](7-) react with HfCl(4) to yield [alpha(1)-HfP(2)W(17)O(61)](6-) and [alpha-Hf(OH)PW(11)O(39)](4-), isolated as organo-soluble tetrabutylammonium (TBA) salts. Subsequent analyses, including mass spectrometry, show that they are stronger Lewis acids than (TBA)(5)H(2)[alpha(1)-YbP(2)W(17)O(61)]. The new polyoxotungstates catalyze Lewis acid mediated organic reactions, such as Mukaiyama aldol and Mannich-type additions. In particular, reactions with aldehydes, which were impossible with lanthanide polyoxotungstates, are made possible. Thus these modifications of the polyoxometalate composition allowed fine tuning of the Lewis acidity. The catalysts could be easily recovered and reused.  相似文献   

12.
Morris DE 《Inorganic chemistry》2002,41(13):3542-3547
Detailed voltammetric results for five uranyl coordination complexes are presented and analyzed using digital simulations of the voltammetric data to extract thermodynamic (E(1/2)) and heterogeneous electron-transfer kinetic (k(0) and alpha) parameters for the one-electron reduction of UO(2)(2+) to UO(2)(+). The complexes and their corresponding electrochemical parameters are the following: [UO(2)(OH(2))(5)](2+) (E(1/2) = -0.169 V vs Ag/AgCl, k(0) = 9.0 x 10(-3) cm/s, and alpha = 0.50); [UO(2)(OH)(5)](3-) (-0.927 V, 2.8 x 10(-3) cm/s, 0.46); [UO(2)(C(2)H(3)O(2))(3)](-) (-0.396 V, approximately 0.1 cm/s, approximately 0.5); [UO(2)(CO(3))(3)](4-) (-0.820 V, 2.6 x 10(-5) cm/s, 0.41); [UO(2)Cl(4)](2-) (-0.065 V, 9.2 x 10(-3) cm/s, 0.30). Differences in the E(1/2) values are attributable principally to differences in the basicity of the equatorial ligands. Differences in rate constants are considered within the context of Marcus theory of electron transfer, but no specific structural change(s) in the complexes between the two oxidation states can be uniquely identified with the underlying variability in the heterogeneous rate constants and electron-transfer coefficients.  相似文献   

13.
The ammonium salt of [Fe(4)O(OH)(hpdta)(2)(H(2)O)(4)](-) is soluble and makes a monospecific solution of [Fe(4)(OH)(2)(hpdta)(2)(H(2)O)(4)](0)(aq) in acidic solutions (hpdta = 2-hydroxypropane-1,3-diamino-N,N,N',N'-tetraacetate). This tetramer is a diprotic acid with pK(a)(1) estimated at 5.7 ± 0.2 and pK(a)(2) = 8.8(5) ± 0.2. In the pH region below pK(a)(1), the molecule is stable in solution and (17)O NMR line widths can be interpreted using the Swift-Connick equations to acquire rates of ligand substitution at the four isolated bound water sites. Averaging five measurements at pH < 5, where contribution from the less-reactive conjugate base are minimal, we estimate: k(ex)(298) = 8.1 (±2.6) × 10(5) s(-1), ΔH(++) = 46 (±4.6) kJ mol(-1), ΔS(++) = 22 (±18) J mol(-1) K(-1), and ΔV(++) = +1.85 (±0.2) cm(3) mol(-1) for waters bound to the fully protonated, neutral molecule. Regressing the experimental rate coefficients versus 1/[H(+)] to account for the small pH variation in rate yields a similar value of k(ex)(298) = 8.3 (±0.8) × 10(5) s(-1). These rates are ~10(4) times faster than those of the [Fe(OH(2))(6)](3+) ion (k(ex)(298) = 1.6 × 10(2) s(-1)) but are about an order of magnitude slower than other studied aminocarboxylate complexes, although these complexes have seven-coordinated Fe(III), not six as in the [Fe(4)(OH)(2)(hpdta)(2)(H(2)O)(4)](0)(aq) molecule. As pH approaches pK(a1), the rates decrease and a compensatory relation is evident between the experimental ΔH(++) and ΔS(++) values. Such variation cannot be caused by enthalpy from the deprotonation reaction and is not well understood. A correlation between bond lengths and the logarithm of k(ex)(298) is geochemically important because it could be used to estimate rate coefficients for geochemical materials for which only DFT calculations are possible. This molecule is the only neutral, oxo-bridged Fe(III) multimer for which rate data are available.  相似文献   

14.
The synthesis of the intramolecularly coordinated heteroleptic organostannylene tungsten pentacarbonyl complexes 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)Sn(X)W(CO)(5) (1, X = Cl; 2, X = F; 3, X = PPh(2)) and of 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)Sn[W(CO)(5)]PPh(2)[W(CO)(5)], 4, are reported. UV-irradiation of compound 4 in tetrahydrofurane serendipitously gave the bis(organostannylene) tungsten tetracarbonyl complex cyclo-O(2)W[OSn(R)](2)W(CO)(4) (R = 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)), 5, that contains an unprecedented W(0)-Sn-O-W(vi) bond sequence. The compounds 1-5 were characterized by means of single crystal X-ray diffraction analysis, (1)H, (13)C, (19)F, (31)P, (119)Sn NMR, and IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and elemental analysis. Compound 4 features a hindered rotation about the Sn-P bond.  相似文献   

15.
Two new {P(8)W(48)} wheel-based compounds, Na(12)Li(16){[Cu(H(2)O)](2)[Cu(4)(OH)(4)(H(2)O)(8)](2)P(8)W(48)O(184)}·55H(2)O (1), and K(4)Na(24)Li(10){(MoO(2))(2)(P(8)W(48)O(184))}·61H(2)O (2) have been synthesized by a conventional aqueous solution method, and characterized by UV, IR, TG analysis, XPRD, (31)P NMR, XPS, single-crystal X-ray diffraction analyses, magnetic study and electrochemistry study. In compound 1, a wheel-type {P(8)W(48)} containing two {Cu(4)} clusters and two isolated Cu cations results in a 10-Cu-containing polyoxotungstate, which represents the first {P(8)W(48)}-based compound trapping two transition metal (TM) clusters in its inner cavity. Further, the polyoxoanion was connected by Na(+) and Li(+) cations into a 3D framework. Compound 2 is a 2-Mo-containing {P(8)W(48)}-based polyoxotungstate. Magnetic study indicates that antiferromagnetic interactions exist in compound 1.  相似文献   

16.
Ruthenium-terpyridine complexes incorporating a 2,2'-dipyridylamine ancillary ligand [Ru(II)(trpy)(L)(X)](ClO(4))(n) [trpy = 2,2':6',2' '-terpyridine; L = 2,2'-dipyridylamine; and X = Cl(-), n = 1 (1); X = H(2)O, n = 2 (2); X = NO(2)(-), n = 1 (3); X = NO(+), n = 3 (4)] were synthesized in a stepwise manner starting from Ru(III)(trpy)(Cl)(3). The single-crystal X-ray structures of all of the four members (1-4) were determined. The Ru(III)/Ru(II) couple of 1 and 3 appeared at 0.64 and 0.88 V versus the saturated calomel electrode in acetonitrile. The aqua complex 2 exhibited a metal-based couple at 0.48 V in water, and the potential increased linearly with the decrease in pH. The electron-proton content of the redox process over the pH range of 6.8-1.0 was calculated to be a 2e(-)/1H(+) process. However, the chemical oxidation of 2 by an aq Ce(IV) solution in 1 N H(2)SO(4) led to the direct formation of corresponding oxo species [Ru(IV)(trpy)(L)(O)](2+) via the concerted 2e(-)/2H(+) oxidation process. The two successive reductions of the coordinated nitrosyl function of 4 appeared at +0.34 and -0.34 V corresponding to Ru(II)-NO(+) --> Ru(II)-NO* and Ru(II)-NO* --> Ru(II)-NO(-), respectively. The one-electron-reduced Ru(II)-NO* species exhibited a free-radical electron paramagnetic resonance signal at g = 1.990 with nitrogen hyperfine structures at 77 K. The NO stretching frequency of 4 (1945 cm(-1)) was shifted to 1830 cm(-1) in the case of [Ru(II)(trpy)(L)(NO*)](2+). In aqueous solution, the nitrosyl complex 4 slowly transformed to the nitro derivative 3 with the pseudo-first-order rate constant of k(298)/s(-1) = 1.7 x 10(-4). The chloro complex 1 exhibited a dual luminescence at 650 and 715 nm with excited-state lifetimes of 6 and 1 micros, respectively.  相似文献   

17.
The 16-Fe(III)-containing 48-tungsto-8-phosphate [P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)](20-) (1) has been synthesised and characterised by IR and ESR spectroscopy, TGA, elemental analyses, electrochemistry and susceptibility measurements. Single-crystal X-ray analyses were carried out on Li(4)K(16)[P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)]66 H(2)O2 KCl (LiK-1, orthorhombic space group Pnnm, a=36.3777(9) A, b=13.9708(3) A, c=26.9140(7) A, and Z=2) and on the corresponding mixed sodium-potassium salt Na(9)K(11)[P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)].100 H(2)O (NaK-1, monoclinic space group C2/c, a=46.552(4) A, b=20.8239(18) A, c=27.826(2) A, beta=97.141(2) degrees and Z=4). Polyanion 1 contains--in the form of a cyclic arrangement--the unprecedented {Fe(16)(OH)(28)(H(2)O)(4)}(20+) nanocluster, with 16 edge- and corner-sharing FeO(6) octahedra, grafted on the inner surface of the crown-shaped [H(7)P(8)W(48)O(184)](33-) (P(8)W(48)) precursor. The synthesis of 1 was accomplished by reaction of different iron species containing Fe(II) (in presence of O(2)) or Fe(III) ions with the P(8)W(48) anion in aqueous, acidic medium (pH approximately 4), which can be regarded as an assembly process under confined geometries. One fascinating aspect is the possibility to model the uptake and release of iron in ferritin. The electrochemical study of 1, which is stable from pH 1 through 7, offers an interesting example of a highly iron-rich cluster. The reduction wave associated with the Fe(III) centres could not be split in distinct steps independent of the potential scan rate from 2 to 1000 mV s(-1); this is in full agreement with the structure showing that all 16 iron centres are equivalent. Polyanion 1 proved to be efficient for the electrocatalytic reduction of NO(x), including nitrate. Magnetic and variable frequency EPR measurements on 1 suggest that the Fe(III) ions are strongly antiferromagnetically coupled and that the ground state is tentatively spin S=2.  相似文献   

18.
Lam WW  Lee MF  Lau TC 《Inorganic chemistry》2006,45(1):315-321
The kinetics of the oxidation of hydroquinone (H(2)Q) and its derivatives (H(2)Q-X) by trans-[Ru(VI)(tmc)(O)(2)](2+) (tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) have been studied in aqueous acidic solutions and in acetonitrile. In H(2)O, the oxidation of H(2)Q has the following stoichiometry: trans-[Ru(VI)(tmc)(O)(2)](2+) + H(2)Q --> trans-[Ru(IV)(tmc)(O)(OH(2))](2+) + Q. The reaction is first order in both Ru(VI) and H(2)Q, and parallel pathways involving the oxidation of H(2)Q and HQ(-) are involved. The kinetic isotope effects are k(H(2)O)/k(D(2)O) = 4.9 and 1.2 at pH = 1.79 and 4.60, respectively. In CH(3)CN, the reaction occurs in two steps, the reduction of trans-[Ru(VI)(tmc)(O)(2)](2+) by 1 equiv of H(2)Q to trans-[Ru(IV)(tmc)(O)(CH(3)CN)](2+), followed by further reduction by another 1 equiv of H(2)Q to trans-[Ru(II)(tmc)(CH(3)CN)(2)](2+). Linear correlations between log(rate constant) at 298.0 K and the O-H bond dissociation energy of H(2)Q-X were obtained for reactions in both H(2)O and CH(3)CN, consistent with a H-atom transfer (HAT) mechanism. Plots of log(rate constant) against log(equilibrium constant) were also linear for these HAT reactions.  相似文献   

19.
Heating WTe(2), Te, and Br(2) at 390 degrees C followed by extraction with KCN gives [W(3)Te(7)(CN)(6)](2-). Crystal structures of double salts Cs(3.5)K{[W(3)Te(7)(CN)(6)]Br}Br(1.5).4.5H(2)O (1), Cs(2)K(4){[W(3)Te(7)(CN)(6)](2)Cl}Cl.5H(2)O (2), and (Ph(4)P)(3){[W(3)Te(7)(CN)(6)]Br}.H(2)O (3) reveal short Te(2)...X (X = Cl, Br) contacts. Reaction of polymeric Mo(3)Se(7)Br(4) with KNCSe melt gives [Mo(3)Se(7)(CN)(6)](2-). Reactions of polymeric Mo(3)S(7)Br(4) and Mo(3)Te(7)I(4) with KNCSe melt (200-220 degrees C) all give as final product [Mo(3)Se(7)(CN)(6)](2)(-) via intermediate formation of [Mo(3)S(4)Se(3)(CN)(6)](2-)/[Mo(3)SSe(6)(CN)(6)](2-) and of [Mo(3)Te(4)Se(3)(CN)(6)](2-), respectively, as was shown by ESI-MS. (NH(4))(1.5)K(3){[Mo(3)Se(7)(CN)(6)]I}I(1.5).4.5H(2)O (4) was isolated and structurally characterized. Reactions of W(3)Q(7)Br(4) (Q = S, Se) with KNCSe lead to [W(3)Q(4)(CN)(9)](5-). Heating W(3)Te(7)Br(4) in KCNSe melt gives a complicated mixture of W(3)Q(7) and W(3)Q(4) derivatives, as was shown by ESI-MS, from which E(3)[W(3)(mu(3)-Te)(mu-TeSe)(3)(CN)(6)]Br.6H(2)O (5) and K(5)[W(3)(mu(3)-Te)(mu-Se)(3)(CN)(9)] (6) were isolated. X-ray analysis of 5 reveals the presence of a new TeSe(2-) ligand. The complexes were characterized by IR, Raman, electronic, and (77)Se and (125)Te NMR spectra and by ESI mass spectrometry.  相似文献   

20.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号