首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
纯电动汽车磷酸铁锂电池组放电效率模型   总被引:2,自引:0,他引:2  
以320V/100A·h磷酸铁锂动力电池组为研究对象,在电动汽车动力电池性能测试试验台上对电池组容量效率、开路电压及电压性效率等特性参数进行了测试.采用二次多项式构建了电池组放电效率模型,描述放电效率与电流及电池荷电状态之间的关系.利用实车测试的电池组放电电流对建立的模型进行了验证,模型的放电效率计算值与实测值的最大相对误差为0.8%,建立的模型是有效的.  相似文献   

2.
磷酸铁锂电池低温性能的研究   总被引:1,自引:0,他引:1  
为了提高磷酸铁锂(LiFePO4)电池的低温性能,采用电导率较高的碳纳米管作为磷酸铁锂电极的导电剂,以LiFePO4和金属锂为正负极材料,低温性能测试结果表明,碳纳米管在电极中易形成良好的导电网络,减轻电极的极化,能有效改善磷酸铁锂电池的低温放电性能.  相似文献   

3.
针对车载磷酸铁锂动力电池组串联充电的需求,搭建了磷酸铁锂动力电池组管理系统,对动力电池组进行了串联充电试验。分析了电池组串联充电过程中单节电池电压和荷电状态不一致的情况,讨论了电池组单节电池的分散性对充电性能的影响,提出了对单节电池进行小电流补充充电的均衡方法,使电池组中单节电池的荷电状态基本相等。理论分析和试验验证表明,电池组串联充电末期,单节电池之间电压相差较大,荷电状态有一定差异,对单节电池补入少量电量(小于5%)即可使得电池组荷电状态一致性得到较大的改善。提出一种阶段式动力电池组均衡充电方法,从而可以避免动力电池组个别电池过充,而其他电池充不满的问题。  相似文献   

4.
针对现有均衡充电方法的缺点,提出了一种基于能量转移的锂电池组单体电池均衡充电方法,详细分析了该方法的工作原理并通过实验对所提出的均衡电路进行了分析与论证.结果表明,该方法具有结构简单、效率高的优点,能有效地解决串联锂电池组充电不平衡问题.  相似文献   

5.
阐明退役电池的老化行为和衰减机理有助于对其安全高效地再利用。本文采用容量标定、循环老化、材料表面分析等试验方法对一个近似于盲盒的退役电池系统的老化行为进行了研究。研究结果表明,虽然整个退役电池系统是按照容量衰减到80%的做法进行退役,但是退役电池系统中大部分的电池模组SOH值远远高于80%。选取的一个电池模组在设定的2C倍率、100% DOD的老化模式下循环到60% SOH以下只有400次,前200次循环衰减较慢,后200次循环衰减较快。材料表面分析结果发现退役电池在循环老化后阳极的劣化要比阴极的更严重,可循环锂的消耗是导致电池容量衰减的主要原因之一。因此,退役电池梯次利用时从模组级别进行分选和成组,可以最大化地挖掘其剩余价值,同时应尽可能在低电流倍率和浅充浅放等较温和工况下使用退役电池。  相似文献   

6.
磷酸铁锂因为其稳定、安全、环保以及高性能,被认为是一种很有希望的锂电池电极材料。本文中,报道了一种制备磷酸铁锂纳米棒状材料的方法。经分析表明,得到的材料纯度较高,形貌生长较好。在电化学性能测试中表现出了较好的比容量和循环特性,具备一定应用潜力。  相似文献   

7.
以FeCl3·6H2O、FeCl2·4H2O、H3PO4为原料,共沉淀法得到了结晶度和热稳定性良好的磷酸铁-磷酸铁锂均相材料的同时,对产物进行了XRD、TG-DSC、红外光谱表征,并研究了沉淀温度及热处理温度对产物性能的影响.  相似文献   

8.
串联磷酸铁锂电池组保护电路设计   总被引:2,自引:0,他引:2  
设计出了一种新型的串联锂离子电池组保护电路.该保护电路采用MOSFET开关,根据过流时电池组MOSFET电压的变化来设计过流保护电路,并通过实物验证了该保护电路能够在20ms动作,从而保护了电池组和改善了电池的性能,延长了电池的寿命.  相似文献   

9.
设计了磷酸铁锂电池组的充放电电路,主电路为双向直流-直流变换电路,控制电路是以单片机STC12C5A60S2为核心的.为了实现对磷酸铁锂电池组的充、放电的控制,输入、输出电压和电池组电流信号经过调理电路后,送入单片机,利用单片机片内10位模数转换器转变为数字信号,在单片机中利用数字PI算法,输出47 kHz的脉冲调制信...  相似文献   

10.
锂离子电池不一致性是影响其使用的重要指标,为分析锂电池的不一致性,对8Ah锂离子电池组进行常温下1C,2C、3C,4C充放电实验。实验结果显示:锂电池组的不一致性比较明显;提出了一种基于锂电池纽整体离散度和单体离散度分析锂电池纽不一致性的方法。  相似文献   

11.
典型温度下磷酸铁锂电池PNGV模型研究   总被引:1,自引:0,他引:1  
温度是影响电池性能的重要因素之一。本文对典型温度下磷酸铁锂电池PNGV模型进行研究。通过大量的试验得出了磷酸铁锂电池充放电特性曲线,在此基础上建立了PNGV模型。应用混合脉冲功率性能测试试验(HPPC)对典型温度下模型参数进行了辨识,分析了典型温度下模型参数的变化规律。最后应用基于北京公交的纯电动客车用动力电池动态测试工况(BBDST)对模型进行了验证。验证结果表明PNGV模型在一定程度上能够反映磷酸铁锂电池的特性。同时,该模型在磷酸铁锂电池上的应用也存在一定的累积误差。  相似文献   

12.
为实现电池的高精度状态估计,对磷酸铁锂电池进行了4个不同温度下的基础性能实验,同时设计了一种变温工况下获得全荷电状态(SOC)范围的开路电压实验方法,为建立考虑温度因素的二阶RC电池模型以及参数敏感性分析提供数据支持。此外,利用不同温度下的混合功率脉冲测试数据,基于粒子群优化算法辨识得到了不同温度下准确的模型参数。最后,基于单次单因子法对已建立的电池模型中各个参数进行敏感性分析,分析结果对考虑温度的参数辨识和状态估计工作具有借鉴意义。  相似文献   

13.
粘结剂对C-LiFePO4/石墨电池电化学性能的影响   总被引:1,自引:0,他引:1  
采用商品化的LiFePO4作为原料,对比水系粘结剂和油性粘结剂(PVDF)对LiFePO4电池初始放电容量、循环性能,倍率性能和内阻的影响.利用XRD对循环后的电池正极进行分析.研究结果表明,油性粘结剂体系中LiFePO4的容量较高,首次放电容量达到124 mA·h/g,且循环性能较好,200次循环容量保持率为96.3%.发现水性粘结剂电池循环后LiFePO4结构变化较大.水性粘结剂的倍率性能良好,1C(C为充放电倍率)容量是0.1C的92.2%,而对于油性粘结剂,1C容量是0.1C的85.5%;水性体系中电极界面阻抗要小于油性体系中的界面阻抗,并且水性粘结剂电池的内阻要小于油性粘结剂的内阻.  相似文献   

14.
由于磷酸铁锂电池在多方面的优越性能,它在电动汽车领域的应用已经越来越广泛。文章针对磷酸铁锂电池,给出了其改进的PNGV模型,并通过电池恒流充放电特性和脉冲充放电特性实验,利用插值和最小二乘拟合方法进行电池模型参数辨识,实现了磷酸铁锂电池的较准确建模,并采用扩展卡尔曼滤波算法(EKF)完成了电池荷电状态(SOC)的准确估计。  相似文献   

15.
尖晶石锰酸锂和橄榄石磷酸铁锂离子电池是当前电动汽车用动力电池的主体,采用实验比较研究的方法,对比了两种动力电池正极材料电化学特性,研究了两种材料制备成动力电池的能量密度、功率密度、温度特性、循环寿命以及应用特性.结果表明:除低温性能和功率密度外,磷酸铁锂动力电池在其他方面的性能均优于锰酸锂动力电池.  相似文献   

16.
从锂离子正极材料LiFePO4的研究和发展来说明,应用环境友好材料对更好的实现循环经济有重要的作用.循环经济要求从源头上、使用中和排放时,能够实现低开采、高利用、低排放.而LiFePO4正极材料的使用可以弥补之前正极材料的缺点,充分体现循环经济的优势.因此,循环经济要求更多的环境友好材料的研究和应用.  相似文献   

17.
考察添加碳纳米管作导电剂对LiFePO4锂离子电池性能的影响.采用液态锂离子电池工艺制备063048型LiFePO4锂离子电池,利用XRD,SEM及充放电方法对电池电极的结构、表面形貌和电化学性能进行表征和测试.研究结果表明:添加碳纳米管作导电剂的极片压实密度与未添加的相比提高了5%,同时也形成了良好的导电网络,电池内阻较小,电池首次放电容量达到131.8 mA·h/g,而未添加碳纳米管的首次放电容量为124.6 mA.h/g;添加碳纳米管作导电剂电池的循环性能较好,120次循环后容量几乎没有衰减,而未添加碳纳米管的电池经120次循环后容量保持率为94.1%.添加碳纳米管作导电剂电池的倍率性能优异,其6C的放电容量是0.5C的81.8%(其中,C为电流倍率),未添加碳纳米管的电池6C的放电容量是0.5C的75%.添加碳纳米管作导电剂的电池,电极界面阻抗比未添加碳纳米管的电池的界面阻抗小.  相似文献   

18.
探讨在EC+PC+DMC复合溶剂体系中LiODFB-TEABF4复合盐电解液与LiFePO4锂离子电池及AC双电层电容器的相容性规律.研究结果表明:在LiODFB基电解液中加入TEABF4能显著提高电解液的电导率;对于LiFePO4电池体系,电解液中的TEABF4参与了SEI膜的成膜过程,但TEABF4浓度过高不利于电极材料的容量的提高;对于AC电容器体系,加入TEABF4可以有效改善电容器的双电层储能行为,同时显著提高电容,当TEABF4浓度为0.3 mol/L时,电容达到最大,比不添加TEABF4的纯LiODFB盐电解液的电容大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号