首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
一种在固体基底上制备高度取向氧化锌纳米棒的新方法   总被引:8,自引:1,他引:8  
郭敏  刁鹏  蔡生民 《化学学报》2003,61(8):1165-1168
采用廉价、低温的方法,在修饰过ZnO纳米粒子膜的ITO基底上成功制备出具有 高长径比、高度取向的ZnO纳米棒阵列,用扫描电子显微镜(SEM),X射线衍射(XRD) ,高分辨透射电子显微镜(HRTEM)以及拉曼光谱对制备出的ZnO纳米棒的结构和形貌 进行了表征,测试结果表明,ZnO纳米棒是单晶,属于六方晶系,与基底直,上仍 沿(001)晶面择优生长的特征,并且ZnO纳米棒基本上无氧空位的存在,统计结果显 示,水热反应2h后90%以上的ZnO纳米棒直径为120~190nm,长度为4μm  相似文献   

2.
The ability to direct the self-assembly of biomolecules on surfaces with true nanoscale control is key for the creation of functional substrates. Herein we report the fabrication of nanoscale biomolecular arrays via selective self-assembly on nanopatterned surfaces and minimized nonspecific adsorption. We demonstrate that the platform developed allows for the simultaneous screening of specific protein-DNA binding events at the single-molecule level. The strategy presented here is generally applicable and enables high-throughput monitoring of biological activity in real time and with single-molecule resolution.  相似文献   

3.
Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.  相似文献   

4.
Recent analytical innovations for nucleic acid detection have revolutionized the biological sciences. Single nucleic acid sequence detection methods have been expanded to incorporate multiplexed detection strategies. A variety of nucleic acid detection formats are now available that can address high throughput genomic interrogation. Many of these parallel detection platforms or arrays, employ fluorescence as the signaling method. Fluorescence-based assays offer many advantages, including increased sensitivity, safety and multiplexing capabilities, as well as the ability to measure multiple fluorescence properties. Multiplexed microarray platforms provide parallel detection capabilities capable of measuring thousands of simultaneous responses. This review will discuss both single target detection and microarray applications with a focus on gene expression and pathogenic microorganism (PM) detection.  相似文献   

5.
The fluorescence-based sensing capability of ultrathin ZnO-SiO(2) nanoplatforms, deposited by an integrated approach of colloidal lithography and metal organic chemical vapor deposition, has been investigated upon adsorption of fluorescein-labeled albumin, used as model analyte biomolecule. The protein immobilization process after spontaneous adsorption/desorption significantly enhances the green emission of the different ZnO-based films, as evidenced by scanning confocal microscopy, corresponding to a comparable protein coverage detected by X-ray photoelectron spectroscopy. Moreover, experiments of fluorescence recovery after photobleaching evidence that the protein lateral diffusion at the biointerface is affected by the chemical and/or topographical patterning of hybrid ZnO-SiO(2) surfaces. The used approach is very promising for biomolecular detection applications of these ZnO-SiO(2) nanoplatforms, by simple sizing of the 2D vs. 3D patterning design, which in turn is accomplished by the fine tuning of the integrated colloidal lithography-chemical vapor deposition processes.  相似文献   

6.
We report a study on the effect of seeding on glass substrates with zinc oxide nanocrystallites towards the hydrothermal growth of ZnO nanorods from a zinc nitrate hexahydrate and hexamethylenetetramine solution at 95 °C. The seeding was done with pre-synthesized ZnO nanoparticles in isopropanol with diameters of about 6–7 nm as well as the direct growth of ZnO nanocrystallites on the substrates by the hydrolysis of pre-deposited zinc acetate film. The nanorods grown on ZnO nanoparticle seeds show uniform dimensions throughout the substrate but were not homogenously aligned vertically from the substrate and appeared like nanoflowers with nanorod petals. Nanorods grown from the crystallites formed in situ on the substrates displayed wide variations in dimension depending upon the preheating and annealing conditions. Annealing the seed crystals below 350 °C led to scattered growth directions whereupon preferential orientation of the nanorods perpendicular to the substrates was observed. High surface to volume ratio which is vital for gas sensing applications can be achieved by this simple hydrothermal growth of nanorods and the rod height and rod morphology can be controlled through the growth parameters.  相似文献   

7.
Because of their multifunctionality and unique magnetic properties, superparamagnetic iron oxide nanoparticles (SPIONs) have been recognized as very promising materials for various biomedical applications. The main difficulty with the use of SPIONs as multimodal bioimaging agents is their lack of fluorescence. Since cells can act as extremely efficient filters for the elution of surface-bound fluorescent tags with nanoparticles, the surface loaded fluorescence dyes significantly decay after a short period of time. Here, for the first time, we introduce novel, engineered multimodal SPIONs with a permanent fluorescence capability, the study of which can lead to a deeper understanding of biological processes at the biomolecular level, greatly influencing molecular diagnostics, imaging and therapeutic applications.  相似文献   

8.
Understanding structural and functional changes of polymeric surface-bound proteins is extremely important as polymers play an increasingly significant role as arrays and substrates in proteomics applications. We carried out, for the first time, quantitative activity measurements of horseradish peroxidase (HRP) enzymes immobilized selectively on the polystyrene domains of microphase-separated polystyrene-block-polymethylmethacrylate ultrathin films. The specific enzymatic activity of HRP adsorbed on the diblock copolymer surface was evaluated and compared to that of HRP in free solution. We demonstrate that the polymeric surface-bound HRP molecules maintain approximately 85% of their activity in free solution. The unique advantages of diblock copolymer templates, involving nanoscale self-assembly and largely retained protein functionality, make the spontaneously constructed enzyme nanoarrays highly suitable as proteomics substrates. Our novel assembly method of providing functional enzymes on diblock copolymer thin films can be greatly beneficial for high-throughput and high-density protein assays.  相似文献   

9.
DNA nanotechnology has been employed in the construction of self‐assembled nano‐biomaterials with uniform size and shape for various biological applications, such as bioimaging, diagnosis, or therapeutics. Herein, recent successful efforts to utilize multifunctional DNA origami nanoplatforms as drug‐delivery vehicles are reviewed. Diagnostic and therapeutic strategies based on gold nanorods, chemotherapeutic drugs, cytosine–phosphate–guanine, functional proteins, gene drugs, and their combinations for optoacoustic imaging, photothermal therapy, chemotherapy, immunological therapy, gene therapy, and coagulation‐based therapy are summarized. The challenges and opportunities for DNA‐based nanocarriers for biological applications are also discussed.  相似文献   

10.
《中国化学快报》2022,33(10):4505-4516
The applications of fluorescence resonance energy transfer (FRET) are coming to be one of the simplest and most accessible strategy with super-resolved optical measurements. Meanwhile, nanomaterials have become ideal for constructing FRET-based system, due to their unique advantages of tunable emission, broad absorption, and long fluorescence (FL) lifetime. The limitations of traditional FRET-based detections, such as the intrinsic FL, auto-FL, as well as the short FL lifetime, could be overcome with nanomaterials. Consequently, numbers of FRET-based nanomaterials have been constructed for precise, sensitive and selective detections in biological systems. They could act as both energy donors and/or acceptors in the optical energy transfer process for biological detections. Some other nanomaterials would not participate in the energy transfer process, but act as the excellent matrix for modifications. The review will be roughly classified into nanomaterial-involved and uninvolved ones. Different detection targets, such as nucleic acids, pathogenic microorganisms, proteins, heavy metal ions, and other applications will be reviewed. Finally, the other biological applications, including environmental evaluation and mechanism studies would also be summarized.  相似文献   

11.
Recent studies have demonstrated that carbon, in the form of diamond, can be functionalized with molecular and/or biomolecular species to yield interfaces exhibiting extremely high stability and selectivity in binding to target biomolecules in solution. However, diamond and most other crystalline forms of carbon involve high-temperature deposition or processing steps that restrict their ability to be integrated with other materials. Here, we demonstrate that photochemical functionalization of amorphous carbon films followed by covalent immobilization of DNA yields highly stable surfaces with excellent biomolecular recognition properties that can be used for real-time biological detection. Carbon films deposited onto substrates at 300 K were functionalized with organic alkenes bearing protected amine groups and characterized using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The functionalized carbon surfaces were covalently linked to DNA oligonucleotides. Measurements show very high selectivity for binding to the complementary sequence, and a high density of hybridizing DNA molecules. Samples repeatedly hybridized and denatured 25 times showed no significant degradation. The ability to use amorphous carbon films as a basis for real-time biosensing is demonstrated by coating quartz crystal microbalance (QCM) crystals with a thin carbon film and using this for covalent modification with DNA. Measurements of the resonance frequency show the ability to detect DNA hybridization in real time with a detection limit of <3% of a monolayer, with a high degree of reversibility. These results demonstrate that functionalized films of amorphous carbon can be used as a chemically stable platform for integrated biosensing using only room-temperature processing steps.  相似文献   

12.
Two methods have been considered for the deposition of silver nanorods onto conventional glass substrates. In the first method, silver nanorods were deposited onto 3-(aminopropyl)triethoxysilane-coated glass substrates simply by immersing the substrates into the silver nanorod solution. In the second method, spherical silver seeds that were chemically attached to the surface were subsequently converted and grown into silver nanorods in the presence of a cationic surfactant and silver ions. The size of the silver nanorods was controlled by sequential immersion of silver seed-coated glass substrates into a growth solution and by the duration of immersion, ranging from tens of nanometers to a few micrometers. Atomic force microscopy and optical density measurements were used to characterize the silver nanorods deposited onto the surface of the glass substrates. The application of these new surfaces is for metal-enhanced fluorescence (MEF), whereby the close proximity of silver nanostructures can alter the radiative decay rate of fluorophores, producing enhanced signal intensities and an increased fluorophore photostability. In this paper, it is indeed shown that irregularly shaped silver nanorod-coated surfaces are much better MEF surfaces as compared to traditional silver island or colloid films. Subsequently, these new silver nanorod preparation procedures are likely to find a common place in MEF, as they are a quicker and much cheaper alternative as compared to surfaces fabricated by traditional nanolithographic techniques.  相似文献   

13.
Saliva contains various proteins, particularly abundant are phosphoproteins, that may be related to disease occurrences and that play significant roles in a biological system. Thus, medical diagnostics will benefit tremendously if disease-related protein biomarkers are discovered from saliva. In this paper, we propose and demonstrate an approach using functional zinc oxide coated iron oxide magnetic nanoparticles (Fe3O4@ZnO MNPs) as affinity probes to selectively enrich phosphoproteins from complex saliva samples and as microwave absorbers to assist the enrichment and subsequent tryptic digestion of trapped proteins under microwave heating. The target species trapped by MNPs were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) combined with protein database search. Entire analysis time was shortened to less than 20 min. The detection limit of this approach for a monophosphopeptide was as low as 250 pM (10 μL).  相似文献   

14.
以醋酸锌和膨胀石墨为原料, 采用真空辅助压力诱导手段使反应溶液注入膨胀石墨层间, 在180℃下溶剂热反应12 h, 一步得到氧化锌纳米棒/石墨烯复合光催化剂, 采用X射线衍射仪(XRD)和透射电子显微镜(TEM)等对复合光催化剂的结构和形貌进行了表征. 结果表明, 合成的氧化锌纳米棒具有六方晶系纤锌矿结构; 氧化锌纳米棒在石墨烯表面分散性较好, 其平均直径约50 nm, 长度约150~200 nm. 所得氧化锌纳米棒/石墨烯复合材料对亚甲基蓝的降解效率优于目前应用最广泛的光催化剂Degussa P25.  相似文献   

15.
Integration of fluorescent-conjugated polymers as detection moiety with metallic striped nanorods for multiplexed detection of clinically important cancer marker proteins in an immunoassay format was demonstrated in this report. Specifically, cationic conjugated polymers were introduced to protein complexes through electrostatic binding to negatively charged double-stranded DNA, which was tagged on detection antibodies prior to antigen recognition. The intense fluorescence emission of conjugated polymers resulted in highly sensitive detection of cancer marker proteins wherein an undiluted bovine serum sample as low as ∼25 target molecules captured on each particle was detectable. Meanwhile, the use of polymer molecules as the detection probe did not obscure the optical pattern of underlying nanorods, i.e., the encoding capability of barcoded nanorods was preserved, which allowed simultaneous detection of three cancer marker proteins with good specificity.  相似文献   

16.
基于金纳米棒的生物检测、细胞成像和癌症的光热治疗   总被引:5,自引:0,他引:5  
由于金纳米棒颗粒独特的可调的表面等离子共振特性,使得金纳米棒颗粒在纳米复合材料和功能化纳米器件的构建、纳米生物技术、生物医学等领域具有广泛而重要的应用前景。本文综述了金纳米棒颗粒的生物检测、细胞成像和癌症的光热治疗方面的最新研究进展,并介绍了金纳米棒颗粒的光学性质和金纳米棒颗粒和几种主要的表面修饰方法,对金纳米棒颗粒在生物应用过程中存在的主要问题进行了讨论。  相似文献   

17.
Preparation and optical properties of worm-like gold nanorods   总被引:1,自引:0,他引:1  
A type of worm-like nanorods was successfully synthesized through conventional gold nanorods reacting with Na2S2O3 or Na2S. The generated worm-like gold nanorods comprise shrunk nanorod cores and enwrapped shells. Therefore, a gold-gold sulfide core-shell structure is formed in the process, distinguishing from their original counterparts. The formation of the gold chalcogenide layers was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. Experimental results showed that the thickness of the gold chalcogenide layers is controllable. Since the increase of shell thickness and decrease of gold nanorod core take place simultaneously, it allows one to tune the plasmon resonance of nanorods. Proper adjustment of reaction time, temperature, additives and other experimental conditions will produce worm-like gold nanorods demonstrating desired longitudinal plasmon wavelength (LPW) with narrow size distributions, only limited by properties of starting original gold nanorods. The approach presented herein is capable of selectively changing LPW of the gold nanorods. Additionally, the formed worm-like nanorods possess higher sensitive property in localized surface plasmon resonance than the original nanorods. Their special properties were characterized by spectroscopic methods such as Vis-NIR, fluorescence and resonance light scattering. These features imply that the gold nanorods have potential applications in biomolecular recognition study and biosensor fabrications.  相似文献   

18.
《Analytical letters》2012,45(18):3233-3252
Abstract

The electrochemical properties of the interface between two immiscible electrolyte solutions (ITIES) have been studied intensely for more than 30 years now. Although there has always been an interest in the analytical applications of this electrochemical behavior, the opportunities it affords for the detection of biomolecular species, in particular, have become of increased interest in recent years. This mini-review discusses recent advances in this bioanalytical arena, highlighting the detection of molecules ranging from low-molecular-mass bioorganic substances (e.g., neurotransmitters, amino acids, drugs) through to proteins and nucleic acids.  相似文献   

19.
Iron-containing oxide nanoparticles are of great interest from a number of technological perspectives and they are also present in the natural environment. Although recent evidence suggests that particle size plays an important role in the dissolution of metal oxides, a detailed fundamental understanding of the influence of particle size is just beginning to emerge. In the current study, we investigate whether nanoscale size-effects are observed for the dissolution of iron oxyhydroxide under different conditions. The dissolution of two particle sizes of goethite, α-FeOOH in the nanoscale and microscale size regimes (herein referred to as nanorods and microrods), in aqueous suspensions at pH 2 is investigated. It is shown here that in the presence of nitrate, nanorods shows greater dissolution on both a per mass and per surface area basis relative to microrods, in agreement with earlier studies. In the presence of carbonate and phosphate, however, dissolution of α-FeOOH nanorods at pH 2 is significantly inhibited, despite the fact that these anions result in a three- to fivefold enhancement of the dissolution of microrods relative to the nitrate anion. Light scattering techniques and electron microscopy show that nanorod suspensions are less stable compared to microrod suspensions resulting in nanorod aggregation under conditions where microrods stay more dispersed. Furthermore, spectroscopic studies using ATR-FTIR spectroscopy show distinct differences in phosphate and carbonate adsorption on nanorods compared to microrods. These results demonstrate that aggregation and the details of surface adsorption are important in the dissolution behavior of nanoscale materials.  相似文献   

20.
氧化锌富集物的进口能弥补我国锌矿资源的不足,但要求ZnO>50%、Fe<10%、Cl<8%、Cd<0.25%、As<0.6%。目前常采用YS/T 1171.1~10-2017《再生锌原料化学分析方法》检测氧化锌富集物中锌铁氯镉砷含量,该系列检测方法均需要繁琐的湿法样品前处理,测量过程较为冗长,不能满足氧化锌富集物大量进口时快速通关的需求。故实验建立了采用便携式X射线荧光光谱法(PXRF)同时测定氧化锌富集物中锌铁氯镉砷的方法。采用YS/T 1171.3-2017和YS/T 1171.5-2017方法对氧化锌富集物样品进行定值,然后选取21个含量具有梯度的氧化锌富集物样品作为校准样品,建立起各元素X射线荧光强度值与含量的校准曲线。各曲线相关系数在0.8164~0.9999,方法检出限为0.013%~1.95%,各元素的相对标准偏差(RSD,n=11)均小于0.05%。采用本方法和化学方法分别检测氧化锌富集物样品,各元素的本方法检测值与化学分析方法检测值的相对误差均小于20%。本方法能应用到口岸现场进口氧化锌富集物快速筛查,检测一个样品仅需1分钟测量时间,极大地加快了进口氧化锌富集物通关速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号