首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The reactions of Ru3(CO)12 with 1R,4S,6S-4-dimethylamino-4,7,7-trimethylbicyclo[4.1.0]heptane-3-one oxime (dimethylaminocaraneoxime) (I), 1R,4S,6S-4-methylamino-4,7,7-trimethylbicyclo[4.1.0]heptane-3-one oxime (methylaminocarane oxime) (II), and 1R,2R,5R-2-benzylthio-2,6,6-trimethylbicyclo[3.1.1]heptane-3-one oxime (benzylthiopinaneoxime) (III) were studied. The binuclear complex Ru2(CO)4{μ-η3(O,N,X)-L}2 was formed as the main product in every reaction, when Ru3(CO)12 was heated with terpenoid to 80°C. In the above complex, two terpene ligands are coordinated in the form of ‘head-to tail’ bridge by the oxime groups at a binuclear metal fragment Ru-Ru. The heteroatom of the second functional group of every bridging ligand (nitrogen of amino group in I and II, sulfur of the thio group in III) is additionally coordinated to the ruthenium atom to give the chelate five-membered ring. Also the reactions of terpenoids I, II, III with Ru3(CO)12 were performed at room temperature using Me3NO. In this case, as in the thermal reactions, the main product was the binuclear complex. However, in the reactions of Ru3(CO)12 with I and II, the trinuclear clusters were isolated that readily transformed to binuclear complexes in a solution. The complexes synthesized can exist as two diasteromers due to their chiral metal core. However, in all the cases, only one diastereomer was isolated, which indicates stereospecific nature of the above reactions. The compounds obtained were characterized by IR, 1H-, 13C{1H}-, COSY, and HXCOBI-NMR spectroscopy, the specific optical rotation angles were measured. For the binuclear complexes with ligands I, III and for trinuclear cluster with ligand II, single crystals were obtained and studied by X-ray diffraction.  相似文献   

2.
The 68-electrons, phosphane-substituted, osmium selenido-carbonyl cluster [Os4Se3(CO)10(dppm)] (cluster 3; dppm = bis(diphenylphosphino)methane) has been obtained by reaction under mild experimental conditions between [Os3(CO)12] and the diphosphane diselenide dppmSe2. Its crystal and molecular structure has been elucidated by X-ray diffraction methods. Cluster 3 contains only two Os–Os bonds as suggested by its electron count. It can be described as derived from the open-triangular nido cluster [Os33-Se)2(CO)9] through substitution of one CO ligand by the four-electrons donor osmiaselone fragment [CH2(Ph2P)2](CO)2Os=Se. The replacement of a two-electrons donor carbonyl with a four-electron donor fragment produces the cleavage of one Os–Os bond in the nido cluster. Under the adopted experimental conditions, other products of the reaction between [Os3(CO)12] and dppmSe2 are the clusters [Os33-Se)2(CO)9] (1), [Os33-Se)2(CO)7(μ-dppm)] (2), and [Os33-Se)(CO)8(μ-dppm)] (4), already described in the literature.  相似文献   

3.
The reaction of Os3(CO)10(NCMe)2 (1) with an excess of acenaphthylene at room temperature provided the complex Os3(CO)10(μ-H)(μ-η2-C12H7) (2). Compound 2 contains a σ-π coordinated acenaphthyl ligand bridging an edge of the cluster. Compound 2 was converted to the complex Os3(CO)9(μ-H)232-C12H6) (3) when heated to reflux in a cyclohexane solution. Compound 3 contains a triply bridging acenaphthyne ligand. Compound 3 reacts with acenaphthylene again at 160 °C to yield four new cluster complexes: Os4(CO)12422-C12H6) (4); Os2(CO)6(μ-η4-C24H12) (5); Os3(CO)9(μ-H)(μ34-C24H13) (6); and Os2(CO)5(μ-η4-C24H12)(η2-C12H8) (7). All compounds were characterized crystallographically. Compound 4 is a butterfly cluster of four osmium atoms bridged by a single acenaphthyne ligand. Compounds 5 and 7 are dinuclear osmium clusters containing metallacycles formed by the coupling of two equivalents of acenaphthyne. Compound 6 is a triosmium cluster formed by the coupling of an acenaphthyne ligand to an acenapthyl group that is coordinated to the cluster through a combination of σ and π-bonding.  相似文献   

4.
The reaction of Pt(IPr)(SnBu 3 t )(H), 1 [IPr = N-heterocylic carbene ligand N,N ′-bis-(2,6-(diisopropyl) phenyl)imidazol-2-ylidene] with Ru5(μ 5 -C)(CO)15, 2, in 1.2:1 (and 2.2:1) ratio in benzene solvent at refluxing temperature afforded the octahedral monoplatinum–pentaruthenium cluster complexes PtRu5(IPr)(CO)15(μ 6 -C), 3 in 54 % (10 %) yield, PtRu5(IPr)(CO)14(H)2(μ 6 -C), 4 in 6 % (10 %) yield and the diplatinum–pentaruthenium cluster complex Pt2Ru5(IPr)2(CO)15(μ 6 -C), 5 in 2 % (36 %)yield. Complex 3 readily reacts with H2 at room temperature to give complex 4. Compound 5 exhibits dynamical activity in solution where the two Pt(IPr) groups are exchanging rapidly. All three compounds were structurally characterized by single-crystal X-ray diffraction analyses.  相似文献   

5.
Reaction of [Os3(μ-H)2(CO)10] with 3,4-dimethyl-1-phenylphosphole in refluxing cyclohexane affords two substituted triosmium clusters: [Os3(CO)9(μ-H)(μ3112-PhPC4H3Me2)] (1) and [Os3(CO)9(H)(μ212-PhPC4H4Me2)] (2), of which cluster 2 exhibits two chromatographically non-separable isomeric forms attributed to terminal and bridging coordination of the hydride ligand, respectively. When this reaction is performed in refluxing THF, the only product is the cluster [Os3(CO)9(μ-OH)(μ-H)(η1-PhPC4H2Me2)] (3). Crystallographic information obtained for cluster 3 shows the phosphole ligand occupying an equatorial position, as expected, while the OH group is asymmetrically bridging unlike previously reported similar compounds. Additionally, interaction of the labile cluster [Os3(CO)11(CH3CN)] with cyanoethyldi-tert-butylphosphine in dichloromethane at room temperature was found to give [Os3(CO)111- t Bu2PC2H4CN)] (4) as the only product; its crystallographic characterization shows that the phosphine ligand coordinates by means of the phosphorus atom in an equatorial fashion, analogous to compound 3.  相似文献   

6.
Treatment of the electronically unsaturated cluster [(μ-H)Os3(CO)8{Ph2PCH2P(Ph)C6H4}] (1) with primary phosphines PPhH2 and PCyH2 gives the phosphido bridged compounds [(μ-H)Os3(CO)8(μ-PPhH)(μ-dppm)] (2) and [(μ-H)Os3(CO)8(μ-PCyH)(μ-dppm)] (3), respectively, by P-H bond activation of the phosphines and demetallation of the phenyl ring of the diphosphine ligand. Thermolysis of 2 and 3 in refluxing octane at 128 °C results in the formation of the phosphinidene compounds [(μ-H)2Os3(CO)73-PPh)(μ-dppm)] (4) and [(μ-H)2Os3(CO)73-PCy)(μ-dppm)] (5), respectively, by further P-H bond cleavage of the phosphido groups. All the compounds have been characterized by infrared, 1H NMR, 31P{1H} NMR and mass spectroscopic data together with single-crystal X-ray diffraction studies for 4. Compound 4 consists of a triangular cluster of osmium atoms with a symmetrically capped phosphinidene ligand and a bridging dppm ligand.  相似文献   

7.
Microwave heating allows for the high-yield, one-step synthesis of the known triosmium complexes Os3(μ-Br)2(CO)10 (1), Os3(μ-I)2(CO)10 (2), and Os3(μ-H)(μ-OR)(CO)10 with R = methyl (3), ethyl (4), isopropyl (5), n-butyl (6), and phenyl (7). In addition, the new clusters Os3(μ-H)(μ-OR)(CO)10 with R = n-propyl (8), sec-butyl (9), isobutyl (10), and tert-butyl (11) are synthesized in a microwave reactor. The preparation of these complexes is easily accomplished without the need to first prepare an activated derivative of Os3(CO)12, and without the need to exclude air from the reaction vessel. The syntheses of complexes 1 and 2 are carried out in less than 15 min by heating stoichiometric mixtures of Os3(CO)12 and the appropriate halogen in cyclohexane. Clusters 36 and 810 are prepared by the microwave irradiation of Os3(CO)12 in neat alcohols, while clusters 7 and 11 are prepared from mixtures of Os3(CO)12, alcohol and 1,2-dichlorobenzene. Structural characterization of clusters 2, 4, and 5 was carried out by X-ray crystallographic analysis. High resolution X-ray crystal structures of two other oxidative addition products, Os3(CO)12I2 (12) and Os3(μ-H)(μ-O2CC6H5)(CO)10 (13), are also presented.  相似文献   

8.
The valence saturated benzothiazolide triosmium cluster [Os3(CO)10(μ-η2-C7H4NS)(μ-H)] (1) reacts with tetramethylthiourea in refluxing toluene to give [Os3(CO)8(μ-η2-C7H4NS)(η2-SCNMe2NMeCH2)(μ-H)2] (5), which exists as a mixture of two isomers in solution, whereas the electron-deficient cluster [Os3(CO)932-C7H4NS)(μ-H)] (2) reacts with tetramethylthiourea in refluxing cyclohexane to give two new compounds [Os3(CO)8(μ-η2-C7H4NS)(η2-SCNMe2NMeCH2)(μ-H)2] (6) and [Os3(CO)9(μ-η2-C7H4NS)(η1-SC(NMe2)2)(μ-H)] (7). In contrast, the reaction of [Os3(CO)932-C7H3(2-CH3)NS)(μ-H)](3) with tetramethylthiourea in refluxing cyclohexane at 81 °C, gives only [Os3(CO)9(μ-η2-C7H3(2-CH3)NS)(η1-SC(NMe2)2)(μ-H)] (8) in 15% yield. Compound 7 converts into 6 in refluxing toluene whereas a similar thermolysis of 8 results non-specific decomposition. All the compounds have been characterized by elemental analysis, IR, 1H NMR and mass spectroscopic data together with single crystal X-ray diffraction analysis for 5 and 7. Both compounds 5 and 6 contain a cyclometallated tetramethylthiourea ligand which is chelating at the rear osmium atom and are structurally very similar. In 5, the benzothiazolide ligand is coordinated to Os3 triangle via the nitrogen lone pair and C(2) carbon atom of the heterocyclic ring whereas in 6 the ligand is coordinated to the Os3 triangle via the nitrogen lone pair and the C(7) carbon atom of carbocyclic ring. In 7 and 8, the tetramethylthiourea ligand is coordinated at an equatorial site of the osmium atom which is also bound to the nitrogen atom of the benzothiazolide ligand.  相似文献   

9.
The reaction between 1-pyrenecarboxaldehyde (C16H9CHO) and the labile triosmium cluster [Os3(CO)10(CH3CN)2] gives rise to the formation of two new compounds by competitive oxidative addition between the aldehydic group and an arene C-H bond, to afford the acyl complex [Os3(CO)10(μ-H)(μ-COC16H9)] (1) and the compound [Os3(CO)10(μ-H) (C16H8CHO)] (2), respectively. Thermolysis of [Os3(CO)10(μ-H)(μ-C16H9CO)] (1) in n-octane affords two new complexes in good yields, [Os3(CO)9(μ-H)2(μ-COC16H8)] (3) and the pyryne complex [Os3(CO)9(μ-H)23112-C16H8)] (4).In contrast, when 1-pyrenecarboxaldehyde reacts with [Ru3(CO)12] only one product is obtained, [Ru3(CO)9(μ-H)23112-C16H8)] (5), a nonacarbonyl cluster bearing a pyrene ligand. All compounds were characterized by analytical and spectroscopic data, and crystal structures for 1, 2, 4 and 5 were obtained.  相似文献   

10.
The reaction of [Os3(CO)12] with tetramethylthiourea in the presence of a methanolic solution of Me3NO·2H2O at 60° yields the compounds [Os3(CO)11{η 1-SC(NMe2)2}] (1) in 56% yield and [Os3(CO)9(μ-OH)(μ-MeOCO){η 1-SC(NMe2)2}] (2) in 10% yield in which the tetramethylthiourea ligand is coordinatedvia the sulfur atom at an equatorial position. Compound2 is a 50 e? cluster with two metal-metal bonds and the hydroxy and methoxycarbonyl ligands bridging the open metal-metal edge. In contrast, the analogous reaction of [Os3(CO)12] with thiourea gives the compounts [(μ-H)Os3(CO)10{μ-NHC(S)NH2}] (3) in 8% yield and [(μ-H)Os3(CO)9{3-NHC(S)NH2}] (4) in 30% yield. In3, the thioureato ligand bridges two osmium atomsvia the sulfur atom, whereas in4 in addition to the sulfur bridge, one of the nitrogen atoms of thioureato moiety bonds to the remaining osmium atom. The decacarbonyl compounds 3 can also be obtained in 50% yield from the reaction of [Os3(CO)10(MeCN)2] with thiourea at ambient temperature. Compound3 converts to4 (65%) photochemically. Compound1 reacts with PPh3 and acetonitrile at ambient temperature to give the simple substitution products [Os3(CO)11(PPh3)] and [Os3(CO)11(MeCN)], respectively, while with pyridine, the oxidative addition product [(μ-H)Os3(CO)10(μ-NC5H4] is formed at 80°C. All the new compounds are characterized by IR,1-H-NMR and elemental analysis together with the X-ray crystal structures of1,2 and4. Compound1 crystallizes in the triclinic space group P $P\bar 1$ with unit cell parametersa = 8.626(3) Å,b = 11.639(3) Å,c = 12.568(3_ Å,α = 84.67(2)°,β = 75.36(2)°,γ = 79.49(3)°,V = 1199(1) Å3, andZ = 2. Least-squares refinement of 4585 reflections gave a final agreement factor ofR = 0.0766 (R w = 0.0823). Compound2 crystallizes in the monoclinic space group P21/n with unit cell parametersa = 9.149(5) Å,b = 17.483(5) Å,c = 15.094(4) Å,β = 91.75(2)°,V = 2413(2) Å3, andZ = 4. Least-squares refinement of 3632 reflections gave a final agreement factor ofR = 0.0603 (R w = 0.0802). Compound4 crystallizes in the monoclinic space group C2/c with unit cell parametersa = 13.915(7) Å,b = 14.718(6) Å,c = 17.109(6) Å,β = 100.44(3)°,V = 3446(5) Å3, andZ = 8. Least-squares refinement of 2910 reflections gave a final agreement factor ofR = 0.0763 (R w = 0.0863).  相似文献   

11.
TMNO-activated reaction of the heteronuclear cluster Os3Ru(μ-H)2(CO)13 (1) with diphenylphosphine afforded the novel phosphido-bridged clusters Os3Ru(μ-PPh2)(μ-H)3(CO)11 (2), Os3Ru(μ-PPh2)2(μ-H)2(CO)10 (3), Os3Ru(μ-PPh2)2(μ-H)4(CO)9 (4), and Os3Ru(μ-PPh2)(μ-H)3(CO)11(PPh2H) (5). The formation of 2-5 proceeded via P-H bond cleavage in the adduct Os3Ru(μ-H)2(CO)12(PPh2H) (6). Reaction of 2 with PPh3 afforded the adduct Os3Ru(μ-PPh2)(μ-H)3(CO)11(PPh3) (7) and the substituted derivative Os3Ru(μ-PPh2)(μ-H)3(CO)10(PPh3) (8).  相似文献   

12.
Reaction of 1,3,5-trimethyl-1,3,5-triazacyclohexane [(MeNCH2)3] with Os3(CO)12 in refluxing toluene results in C-H and C-N bond activation of the (MeNCH2)3 ligand to afford three amidino cluster complexes (μ-H)Os3(CO)10[μ,η2-CH(NMe)2] (1), (μ-H)Os3(CO)932-CH(NMe)2] (2), and Os2(CO)6[μ,η2-CH(NMe)2]2 (3). The controlled experiments show that thermolysis of 1 yields 2, and heating 2 in the presence of (MeNCH2)3 ligand produces 3. The molecular structures of 1 and 3 have been determined by an X-ray diffraction study.  相似文献   

13.
The reaction of [Ru 3 III 3-O)(μ-O2CCF3)6(H2O)3](O2CCF3) in methanol gives two solvates, [Ru3O(O2CCF3)6(DMSO)3] · 1/2H2O (I) and [Ru3O(O2CCF3)6(DMSO)3] · H2O (II), of a novel trinuclear mixedvalence Ru(II,III,III) trifluoroacetate complex, where two DMSO molecules are coordinated to the Ru atoms through the O atom, while the third DMSO molecule is coordinated through the S atom. According to the X-ray diffraction data, the complex can crystallize in two crystal systems: triclinic (I) (space group P \(\overline 1 \)) and monoclinic (II) (space group P21/m). The unit cell parameters for I are: a = 9.354, b = 11.005, c = 20.846 Å, α = 99.10, β = 96.38, γ = 92.17, Z = 2; R = 7.27%; for I are: a = 9.186, b = 17.044, c = 13.091 Å, β = 101.10, Z = 2; R = 14.18%.  相似文献   

14.
Addition of tri(2-furyl)phosphine, PFu3, to [Os3(CO)10(μ-H)2] at room temperature gives [HOs3(CO)10(PFu3)(μ-H)] (1), while in refluxing toluene the same reactants afford [Os3(CO)93-PFu2(C4H2O)}(μ-H)] (2) resulting from orthometallatation of a furyl ring. Reaction of PFu3 with [Os3(CO)10−n(NCMe)n] (n = 0, 1, 2) affords the substituted clusters [Os3(CO)12−n(PFu3)n] (n = 1-3) (3-5), the phosphine ligands occupying equatorial position in all cases. Heating [Os3(CO)11(PFu3)] (3) in refluxing octane gives [Os3(CO)93-PFu)(μ32-C4H2O)] (6) which results from both carbon-hydrogen and carbon-phosphorus bond activation and contains both μ32-furyne and furylphosphinidene ligands. All new clusters have been characterized by spectroscopic methods together with single crystal X-ray diffraction for 2, 3 and 6.  相似文献   

15.
The compound [Os3(CO)10(μ-Cl)(μ-AuPPh3)] (2) was prepared from the reaction between [Os3(CO)10(NCMe)2] (1) and [AuClPPh3] under mild conditions. The reaction of 2 with 4-mercaptopyridine (4-pyS) ligand yielded compounds [Os3(CO)10(μ-H)(μ-SC5H4N)] (4), formed by isolobal replacement of the fragment [AuPPh3]+ by H+ and [Os3(CO)10(μ-AuPPh3)(μ-SC5H4N)] (5). [Os3(CO)10(μ-H)(μ-SC5H4N)] (4) was also obtained by substitution of two acetonitrile ligands in the activated cluster 1 by 4-pyS, at room temperature in dichloromethane. Compounds 2-5 were characterized spectroscopically and the molecular structures of 4 and 5 in the solid state were obtained by single crystal X-ray diffraction studies.  相似文献   

16.
Treatment of [Os3(CO)73-S)2(μ-dppm)] (1) with Me3NO in toluene at 80 °C affords the trinuclear cluster [Os3(CO)63-S)2(NMe3)(μ-dppm)] (2) and the hexanuclear cluster [Os6(CO)123-S)4(μ-dppm)2] (3) in 30% and 51% yields, respectively. The reaction of 1 with [Os3(CO)10(MeCN)2] in refluxing benzene at 80 °C gives the hexanuclear cluster [Os6(CO)143-S)2(μ-dppm)] (4) in 15% yield. Compound 2 reacts with CO, PPh3 and P(OMe)3 at room temperature to give 1, [Os3(CO)63-S)2(μ-dppm)(PPh3)] (5) and [Os3(CO)63-S)2(μ-dppm){P(OMe)3}] (6), respectively; in high yields indicating that the NMe3 ligand is weakly bound. Compound 1 reacts with PPh3 in presence of Me3NO to afford 5, 2 and 3 in 53%, 6% and 18% yields, respectively, whereas with P(OMe)31 gives only 6 in 84% yield. Compound 3 reacts with CO at 98 °C to regenerate 1 by the cleavage of the three unsupported osmium-osmium bonds. The molecular structures of 4 and 6 have been unambiguously determined by single crystal X-ray diffraction studies. The hexanuclear compound 3 appears to be a64-electron butterfly core with four triply bridging sulfido ligands and two bridging dppm ligands based on the spectroscopic and analytical data. The metal core of 4 can be described as a central tetrahedral array capped on two faces with two additional osmium atoms. The triply bridging sulfido ligands face cap the two tetrahedral arrays formed by metal capping of the two faces of the central tetrahedron. The dppm ligand bridges one edge of one of the external tetrahedral arrays. Compounds 5 and 6 are formed by the displacement of equatorial carbonyl group of 1 by a PPh3 and P(OMe)3 ligand respectively and their structures are comparable to that of 1.  相似文献   

17.
A new Schiff base ligand C19H13NO5(H2L) was synthesized using 2-aminoterephthalic acid and 2-hydroxy-1-naphthaldehyde. A complex of this ligand [Cu(C19H11NO5)(C2H6O)] n was synthesized and characterized by IR, UV, fluorescence spectroscopy and X-ray diffraction single-crystal analysis. The crystal crystallizes in the monoclinic system, space group Pbca with a = 8.7745(18), b = 18.613(4), c = 24.644(5) Å, V = 4024.9(14) Å3, Z = 8, F(000) = 1816, S = 1.009, ρ calcd = 1.462 g cm?3, μ = 1.122 mm?1, the final R = 0.0477 and wR = 0.1594 for 4609 observed reflections (I > 2σ(I)). The Cu(II) is five-coordinated by one N atom and two O atoms from the Schiff base ligand and two carboxylate O atoms from another two ligands to form a distorted square-pyramidal geometry. Each ligand serves as a bridging ligand to link Cu2+ ions, leading to a two-dimensional coordination polymer. The fluorescence properties of the ligand and complex were also studied. The ligand shows strong fluorescence, and the fluorescence intensity is weakened after the Cu(II) complex formed.  相似文献   

18.
A new octanuclear mixed-valence cobalt acetate complex of the cationic type [Co4 IICo4 III4-O)43-OMe)4(μ-OAc)6(H2O)8]F2 · 10H2O ([I]F2 · 10H2O) was prepared by crystallization from a solution of ‘cobalt(III) acetate’ in a Me2CO-MeOH-H2O-HF mixture and studied by X-ray diffraction. The crystals are monoclinic: space group C2/c, a = 17.222 Å, b = 16.836 Å, c = 16.586 Å, β = 94.902°, Z = 4, R = 4.37% (I > 2σ(I)). In the crystal, the I2+ complex cations, fluoride anions, and solvate water molecules form a three-dimensional (3D) coordination supermolecular system.  相似文献   

19.
The reaction of the cluster Os3(CO)10(μ-H)(μ-γ-C5H3O2) (1) with a number of alkynes under thermal or visible light irradiation conditions, afforded in most cases the dinuclear complexes Os2(CO)6(μ-γ-C5H3O2)(μ-LH) (L=PhCCPh, tBuCCH, tBuCCMe or EtCCEt) (2) or the trinuclear chain complexes Os3(CO)9(μ-H)(μ-γ-C5H3O2)(μ-RCCHC6H4) (R=H, Ph) (3). In the case of PhCCPh, a new isomer of Os3(CO)8(PhCCPh)2, viz., Os3(CO)8(μ-PhCCPh)(μ-PhCCHC6H4) (7) has been isolated and characterised.  相似文献   

20.
The title complexes, K[GaIII(Cydta)] · 2H2O(Cydta = trans-1,2-cyclohexanediaminetetraacetic acid) and K[GaIII(Pdta)] · 3H2O (Pdta = propylenediaminetetraacetic acid), were prepared, and their structures were studied by IR spectra, elemental analyses, NMR spectra, and single-crystal X-ray diffraction techniques. In the K[GaIII(Cydta)] · 2H2O complex, the Ga3+ is six-coordinated by the Cydta ligand yielding an octahedral conformation, and the complex crystallizes in the monoclinic system with the P21/c space group. The crystal data are as follows: a = 16.5039(19), b = 13.1499(16), c = 8.5204(10) Å, β = 101.650(2)°, V = 1811.0(4) Å3, Z = 4, ρ = 1.757 g/cm3, μ = 1.805 mm?1, F(000) = 984, R = 0.0291, and wR = 0.0698 for 3713 observed reflections with I ≥ 2σ(I). In the K[GaIII(Pdta)] · 3H2O complex, the Ga3+ is also six-coordinated by the Pdta ligand yielding an almost standard octahedral conformation, and the complex crystallizes in the orthorhombic system with P212121 space group. The crystal data are as follows: a = 8.8913(10), b = 11.6181(13), c = 17.0227(19) Å, V = 1758.4(3) Å3, Z = 4, ρ = 1.757 g/cm3, μ = 1.862 mm?1, F(000) = 952, R = 0.0288, and wR = 0.0724 for 3556 observed reflections with I ≥ 2σ(I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号