首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Derivative properties from equations of state (EoS) are well defined for homogeneous fluid systems. However, some of these properties, such as isothermal and isentropic (or adiabatic) compressibilities and sound velocity need to be calculated at conditions for which a homogeneous fluid splits into two (or more) phases, liquid or vapor. The isentropic compressibility and sound velocity of thermodynamically equilibrated fluids exhibit important discontinuities at phase boundaries, as noticed long ago by Landau and Lifschitz in the case of pure fluids. In this work, the two-phase isentropic compressibility (or inverse bulk modulus) is expressed in terms of the two-phase isothermal compressibility, two-phase thermal expansivity and an apparent heat capacity, defined as the partial derivative of total enthalpy with respect to temperature at constant pressure and composition. The proposed method is simple (simpler than previous approaches), easy to implement and versatile; it is not EoS-dependent and it requires only a flash routine and the expression of total enthalpy at given pressure, temperature and composition. Our approach is applied to a variety of fluid systems representative of reservoir applications and geophysical situations, including petroleum fluids (oil and gas condensate) and mixtures of water and gas (methane or CO2). For low gas content in the two-phase fluid, i.e., near bubble point conditions, we obtain significantly lower bulk moduli and sound velocities than predicted within Wood's conventional approach, in which the liquid and gas phases are considered to be “frozen” at the passage of the acoustic wave.  相似文献   

2.
《Fluid Phase Equilibria》2006,242(1):19-28
In this work, a new two-parameter cubic equation of state is presented based on perturbation theory for predicting phase behavior of pure compounds and of hydrocarbons and non-hydrocarbons. The parameters of the new cubic equation of state are obtained as functions of reduced temperature and acentric factor. The average deviations of the predicted vapor pressure, liquid density and vapor volume for 40 pure compounds are 1.116, 5.696 and 3.083%, respectively. Also the enthalpy and entropy of vaporization are calculated by using the new equation of state. The average deviations of the predicted enthalpy and entropy of vaporization are 2.393 and 2.358%, respectively. The capability of the proposed equation of state for predicting some other thermodynamic properties such as compressibility, second virial coefficient, sound velocity in gases and heat capacity of gases are given, too. The comparisons between the experimental data and the results of the new equation of state show the accuracy of the proposed equation with respect to commonly used equations of state, i.e. PR and SRK. The zeno line has been calculated using the new equation of state and the obtained result compared with quantities in the literatures. Bubble pressure and mole fraction of vapor for 16 binary mixtures are calculated. Averages deviations for bubble pressure and mole fraction of vapor are 9.380 and 2.735%, respectively.  相似文献   

3.
An equation of state for 3He using the Helmholtz potential function has been developed. The lower limit of the equation of 0.01 K is safely above the superfluid transition at 0.0026 K. The upper limit of 60 K is approximately the upper limit of available 3He property measurements. The new state equation form is based on Debye function which goes smoothly to zero in the limit of zero temperature and reduces to the ideal gas in the limit of zero density and/or very high temperature. The equation combines (a) necessary temperature-independent compressibility terms at the lowest temperatures, (b) terms describing the linear specific heat of a Fermi fluid below 1 K, (c) terms describing the phonon excitations which begin above about 1 K, and (d) terms which attempt to fit the conventional critical point thermodynamics at 3.3157 K and 114 604 Pa. State properties, e.g., p-V-T relations, specific heats, thermal expansion, sound velocity, etc., are determined from the Helmholtz energy by standard thermodynamics. Transport properties, e.g., thermal conductivity and viscosity, are not obtained in this work.  相似文献   

4.
Thermodynamic functions (heat capacity, enthalpy, entropy and free energy) have been calculated for naphthalene in the ideal gas state from 273.15 K to 1200 K at 1 atm pressure. Obtained results were critically compared with available experimental and calculated data.  相似文献   

5.
Thermodynamic functions (heat capacity, enthalpy, entropy and free energy) are calculated for methylhalosilanes, dimethylhalosilanes, and dimethyldihalosilanes in the ideal gas state from 298.16 to 1200 K at 1 atm pressure. Statistical thermodynamic methods have been used in the calculations, with functions corrected for internal rotation by the method of Pitzer. Agreement with other literature data, where available, is satisfactory.  相似文献   

6.
The following properties of a purified sample of benzaldehyde have been measured: vapour pressure (311 to 481 K); density of liquid (293 to 490 K); heat capacity of crystals and liquid (13 to 425 K); enthalpy of fusion; triple-point, normal boiling, and critical temperatures; and enthalpy of combustion in oxygen. From the measurements, the enthalpy of vaporization, the entropy (crystal, liquid, and ideal gas); and the enthalpy of formation (liquid and ideal gas) have been calculated. Thermodynamic functions (0 to 1000 K) of the ideal gas have been calculated from a vibrational assignment and molecular dimensions.  相似文献   

7.
王甫洋  陈建挺  李定龙 《化学学报》2009,67(14):1650-1658
用Gaussian 03程序, 在B3LYP/6-31G*水平上全优化计算了吩噻嗪和135个多溴吩噻嗪系列化合物(PBPTHs)在298.15 K和101.3 kPa状态时的热力学参数. 设计等键反应, 计算了PBPTHs系列化合物的标准生成热( )和标准生成自由能( ). 同时研究了这些参数与溴原子的取代位置及取代数目(NPBS)之间的关系. 结果表明: 多溴吩噻嗪的热能校正值(Eth)、恒容热容( )、标准熵( )、标准焓( )以及标准自由能( )与NPBS之间有很强的相关性(r2≥0.998). 在相关方程中, 溴原子的取代个数对多溴代吩噻嗪热力学数值的大小有很大影响. 根据 的相对大小, 从理论上求得异构体的相对稳定性顺序.  相似文献   

8.
《Fluid Phase Equilibria》1988,39(2):111-128
Predictions of thermodynamic properties including second virial coefficients, enthalpies, isobaric heat capacities, speed of sound, and Joule-Thomson coefficients are presented for the Trebble-Bishnoi equation of state. These predictions are compared both to experimental data and to predictions from the Peng-Robinson equation of state. Both equations of state give reasonable and consistent values for all of the above properties.  相似文献   

9.
Ideal gas heat capacities are important for the calculation of caloric properties of real fluids. But as shown in the past, they are not always available with required accuracy or are still lacking. In this paper, we combine quantum mechanical calculations and statistical thermodynamics. In order to find a route to a reliable prediction of ideal gas heat capacity data, we applied various quantum mechanical methods differing by computational effort to difluoromethane (CH2F2). Only the structural formula and fundamental physical constants enter into the calculations. It is shown that quantum mechanics leads to accurate molecular data. Reliable experimental heat capacity data reveal that an accuracy of better than 0.5% is obtained for the ideal gas heat capacity of difluoromethane.  相似文献   

10.
A new cubic equation of state for simple fluids: pure and mixture   总被引:1,自引:0,他引:1  
A two-parameter cubic equation of state is developed. Both parameters are taken temperature dependent. Methods are also suggested to calculate the attraction parameter and the co-volume parameter of this new equation of state. For calculating the thermodynamic properties of a pure compound, this equation of state requires the critical temperature, the critical pressure and the Pitzer’s acentric factor of the component. Using this equation of state, the vapor pressure of pure compounds, especially near the critical point, and the bubble point pressure of binary mixtures are calculated accurately. The saturated liquid density of pure compounds and binary mixtures are also calculated quite accurately. The average of absolute deviations of the predicted vapor pressure, vapor volume and saturated liquid density of pure compounds are 1.18, 1.77 and 2.42%, respectively. Comparisons with other cubic equations of state for predicting some thermodynamic properties including second virial coefficients and thermal properties are given. Moreover, the capability of this equation of state for predicting the molar heat capacity of gases at constant pressure and the sound velocity in gases are also illustrated.  相似文献   

11.
A variational associating fluid theory is proposed to describe equations of state for expanded fluid mercury. The theory is based on the soft-sphere variational theory, incorporating an ab initio diatomic potential and an attractive many-body potential; the latter is evaluated with quantum chemical methods and expressed as a function of the local atomic coordination number and the nearest-neighbor distance. The resultant equation of state can reproduce the observed gas-liquid coexistence curve with good accuracy, without introducing phenomenological effective pair potentials. Various thermodynamic quantities such as pressure, isocloric thermal pressure coefficient, adiabatic sound velocity, and specific heat are calculated over a wide density-temperature range and compared with available experimental data.  相似文献   

12.
13.
气体的导热系数和黏度是重要的热物性参数,其数值大小取决于所处的热力学状态。在目前的导热系数和黏度主要测量方法中,待测工质在测量时需经历非定常的过程或处于具有物性梯度的非平衡态之下,使得待测工质的物性在时间或者空间上不处于一个确定的热力学状态。本文利用圆柱定程干涉法,通过分析气体导热系数和黏度导致的声波能量耗散,结合气体输运理论中对稀疏气体的描述,探索了在确定的热力学状态下同时测量气体导热系数和黏度的方法,并以氩(Ar)为例进行了实验验证。测量结果与已有文献一致性较好,初步证实了方法的可行性。  相似文献   

14.
In this research, we apply the crossover cubic equation of state (XCubic EOS) [1] to the calculations of thermodynamic second-order derivative properties (isochoric heat capacity, isobaric heat capacity, isothermal compressibility, thermal expansion coefficient, the Joule–Thomson coefficient, and speed of sound). This equation of state is used to calculate those properties of pure systems (carbon dioxide, normal alkanes from methane to propane). We show that, over a wide range of states, the equation of state yields each property with a much better accuracy than the original PT equation of state and near the critical region, represents the singular behaviour well.  相似文献   

15.
Thermodynamic functions (heat capacity, enthalpy, entropy and free energy) have been calculated for naphthalene and 11 halogenated naphthalenes in the ideal gas state from 273.15 to 1200 K at 1 atm pressure. All the functions were obtained by statistical—mechanical calculation methods. Agreement with experimental results, where such are available, is satisfactory.  相似文献   

16.
Thermodynamic functions (enthalpy, entropy, free energy, and heat capacity) of azacycloalkan-2-ones with ring sizes n = 4–8 in the ideal gas state are calculated by means of quantum chemistry and statistical physics, using an anharmonic approximation in the range of 298–1500 K with allowance for all known conformers and optical isomers. Equilibrium structures and total energies of lactams are calculated using the B3LYP/6-311++G(3df, 3pd), B3LYP/aug-cc-pVQZ, and MP2/6-311++G(3df, 3pd) methods, and the anharmonic frequencies of the fundamental vibrations of all the investigated structures were found via B3LYP/6-311++G(3df, 3pd).  相似文献   

17.
Computational fluid dynamics modeling of multicomponent thermal plasmas   总被引:1,自引:0,他引:1  
A comprehensive computational model has been developed Jbr flowing thermal plasmas in the absence of electromagnetic fields, with particular emphasis on plasma jets. The plasma is represented as a rnulticomponent chemicalh, reacting ideal gas with temperature-dependent thermodynamic and transport properties. The plasma flow is governed by the transient compressible Navier-Stokes equations in two or three space dimensions. Turbulence is represented by subgrid-scale and k- models. Species diffusion is calculated by an effective binary diffusion approximation, generalized to allow /or ambipolar diffusion of charged species. Ionization, dissociation, recombination, and other chemical reactions are computed by general kinetic and equilibrium chemistry algorithms. Radiation heat loss is currently modeled as a temperature-dependent energy sink. Finite-difference approximations to the governing equations are solved on a rectangular spatial mesh using explicit temporal differencing. Computational inefficiency at low Mach number is avoided br reducing the effective sound speed. The overall computational model is embodied in a new computer code called LAVA. Computational results and comparisons with experimental data are presented Jbr LAVA simulations of a steady-stare axisymmetric argon plasma jet flowing into cold argon.  相似文献   

18.
We apply the crossover lattice equation of state (xLF EOS) [M.S. Shin, Y. Lee, H. Kim, J. Chem. Thermodyn. 40 (2007) 174–179] to the calculations of thermodynamic 2nd-order derivative properties (isochoric heat capacity, isobaric heat capacity, isothermal compressibility, thermal expansion coefficient, Joule–Thompson coefficient, and sound speed). This equation of state is used to calculate the same properties of pure systems (carbon dioxide, normal alkanes from methane to propane). We show that, over a wide range of states, the equation of state yields properties with better accuracy than the lattice equation of state (LF EOS), and near the critical region, represents singular behavior well.  相似文献   

19.
《Fluid Phase Equilibria》2011,303(2):205-216
Recommended vapor pressure data for important industrial solvents, thiophene (CAS RN: 110-02-1), sulfolane (CAS RN: 126-33-0), and dimethyl sulfoxide (CAS RN: 67-68-5), were developed by the simultaneous correlation of vapor pressure and related thermal data (heat capacities of condensed phases, ideal gas heat capacities and calorimetrically determined enthalpies of vaporization). For sulfolane and dimethyl sulfoxide, new vapor pressure data were obtained using the static method in the temperature interval from 273 to 308 K. Liquid heat capacities and calorimetric enthalpies of vaporization were taken from the literature and/or determined by Calvet calorimetry. The thermodynamic properties in the ideal gaseous state were calculated using the methods of statistical thermodynamics based on experimental as well as calculated fundamental vibrational frequencies and molecular structure data. Comparisons with literature values are shown for all measured and derived properties.  相似文献   

20.
Comparative DSC study on thermal decomposition of iron sulphates   总被引:1,自引:1,他引:0  
The objects for the studies of this paper are iron sulfates where the iron has second or third valences and where coordination between iron, sulfur and oxygen is different. DSC technique is used to investigate thermal stability and enthalpy changes when iron compounds are treated in different gas medium. The main objective is to compare thermal stability and enthalpy of iron oxy-sulphate, often detected as an intermediate, with commonly known iron sulphates. DSC curves of samples with equal mass under different gas medium, determining different partial pressure of oxygen in the gas phase, are the base for comparative study of the sample’s thermal properties. Obtained different values of the enthalpy and mass losses and kinetic parameters demonstrate that the stability of oxy-sulphate strongly depended on the value of oxygen partial pressure in the gas phase. The new evidences from the experimental study help to propose the mechanism of the decomposition and to compare some of the iron sulphates properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号