共查询到20条相似文献,搜索用时 19 毫秒
1.
A hydride-based octadecyl stationary phase on both 4.0 and 1.8 microm silica particles is tested in both the capillary LC and the pressurized capillary electrochromatography (pCEC) modes. These two materials are compared to standard C18 stationary phase made by organosilanization and to the hydride material packed into a convention 4.6mm I.D. column. The performance of the capillary columns is evaluated in terms of analysis times for various mixtures as well as efficiency. Of particular interest are the differences between the LC mode where only laminar flow is present and pCEC operation where a flat electrodriven flow profile is superimposed on the parabolic pressurized flow. Differences in performance between columns packed with 4.0 and 1.8 microm particle silica are also evaluated. 相似文献
2.
This review article summarizes the variety of polar stationary phases that have been employed for capillary electrochromatographic separations. Compared with reversed-phase stationary phases, the polar alternatives provide a completely different retention selectivity towards polar and charged analytes. Different types of polar stationary phases are reviewed, including the possible retention mechanisms. Electrochromatographic separations of polar solutes, peptides, and basic pharmaceuticals on polar stationary phases are presented. 相似文献
3.
A review is presented on the current state of the art and future trends in the development of sol-gel stationary phases for capillary electrochromatography (CEC). The design and synthesis of stationary phases with prescribed chromatographic and surface charge properties represent challenging tasks in contemporary CEC research. Further developments in CEC as a high-efficiency liquid-phase separation technique will greatly depend on new breakthroughs in the area of stationary phase development. The requirements imposed on CEC stationary phase performance are significantly more demanding compared with those for HPLC. The design of CEC stationary phase must take into consideration the structural characteristics that will provide not only the selective solute/stationary phase interactions leading to chromatographic separations but also the surface charge properties that determine the magnitude and direction of the electroosmotic flow responsible for the mobile phase movement through the CEC column. Therefore, the stationary phase technology in CEC presents a more complex problem than in conventional chromatographic techniques. Different approaches to stationary phase development have been reported in contemporary CEC literature. The sol-gel approach represents a promising direction in this important research. It is applicable to the preparation of CEC stationary phases in different formats: surface coatings, micro/submicro particles, and monolithic beds. Besides, in the sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. One remarkable advantage of the sol-gel approach is the mild thermal conditions under which the stationary phase synthesis can be carried out (typically at room temperature). It also provides an effective pathway to integrating the advantageous properties of organic and inorganic material systems, and thereby enhancing and fine-tuning chromatographic selectivity of the created hybrid organic-inorganic stationary phases. This review focuses on recent developments in the design, synthesis, characterization, properties, and applications of sol-gel stationary phases in CEC. 相似文献
4.
Giovanni D Orazio María Asensio‐Ramos Chiara Fanali 《Journal of separation science》2019,42(1):360-384
The separation of chiral compounds is an interesting and important topic of research because these compounds are involved in some biological processes, fundamentally in human health. Among the various application fields where enantiomers are remarkable, drug analysis has to be considered. Most of the drugs contain enantiomers and very often one of the two isomers could be pharmacologically more active or even dangerous. Therefore, the separation of these compounds is very important. Among the different analytical techniques usually employed, capillary electrochromatography has demonstrated great capability in enantiomers resolution. The great potential of this electromigration technique stands mainly in its high efficiency due to the use of an electrosmotic flow (flat flow profile) and on the high selectivity because of the use of a stationary phase. Chiral separation can be obtained utilizing several chiral stationary phases including a polysaccharide derivative. The aim of this review paper is to summarize the main features of capillary electrochromatography and polysaccharide derivatives of chiral stationary phase. It also report examples of practical applications utilizing this approach. 相似文献
5.
Enantioseparations of basic and bifunctional pharmaceuticals by capillary electrochromatography using polysaccharide stationary phases 总被引:1,自引:0,他引:1
Mangelings D Hardies N Maftouh M Suteu C Massart DL Vander Heyden Y 《Electrophoresis》2003,24(15):2567-2576
A fast screening strategy was developed in capillary electrochromatography (CEC) for the chiral separation of basic and bifunctional compounds. The screening conditions were determined on polysaccharide chiral stationary phases using 15 pharmaceutical compounds. The content and type of organic modifier, as well as the pH of the mobile phase appeared to have the largest influence on the chiral resolution. It was seen that for acidic compounds, our approach was not suitable. A generic mobile phase for basic and bifunctional compounds was determined. The testing on 20 additional compounds showed that the proposed mobile phase performed well since enantioselectivity was observed for 86% of the investigated compounds. A comparison of CEC and reversed-phase liquid chromatography (RPLC) results was attempted to demonstrate the potential of the used technique for chiral method development. 相似文献
6.
This review summarizes the contributions of a number of groups working in the rapidly growing area of monolithic columns for capillary electrochromatography (CEC), with a focus on those prepared from synthetic polymers. Monoliths have quickly become a well-established stationary phase format in the field of CEC. The simplicity of their in situ preparation method as well as the good control over their porous properties and surface chemistries make the monolithic separation media an attractive alternative to capillary columns packed with particulate materials. A wide variety of approaches as well as materials used for the preparation of the monolithic stationary phases are detailed. Their excellent chromatographic performance is demonstrated by numerous separations of different analytes. 相似文献
7.
A histidine-functionalized silica was prepared by covalent bonding of the functional groups to silane-treated silica gel. Conversion of functional groups was confirmed by infrared (IR) spectra, elemental analysis, and potentiometry. The functionality of the silica gel is 0.293 mmol g(-1). The coordination behavior of the histidine-functionalized silica was investigated by metal capacity and electron paramagnetic resonance (EPR). EPR measurements at different copper loadings were made. The results showed that the copper histidine complex might be distorted tetragonal. Both histidine-functionalized silica and its copper complex were employed as stationary phases for packed capillary electrochromatography (CEC). Electrical current was found helpful for evaluating the properties of frit construction and the stationary phase packing. Test samples include neutral compounds, inorganic anions and organic anions. Factors influencing the separation behavior have been studied. With copper-histidine functionalized silica under the condition of citrate buffer (10 mM, pH 4.0) and applied voltage of -20 kV, the separation of benzoic acid, D- and L-mandelic acid, phthalic acid and salicylic acid could be achieved within 12 min. The column efficiency for these acids was more than 1.2 x 10(5) plates m(-1), except salicylic acid. 相似文献
8.
Synthesis of poly(2-hydroxyethyl methacrylate) (PHEMA) brushes from the inside of silica capillaries by surface-initiated atom transfer radical polymerization (ATRP) yields unique stationary phases for open-tubular capillary electrochromatography (OT-CEC). Although PHEMA brushes have only a small effect on the separation of a set of phenols and anilines, derivatization of PHEMA with ethylenediamine (en) allows baseline resolution of several anilines that co-elute from bare silica capillaries. Derivatization of PHEMA with octanoyl chloride (C8-PHEMA films) affords even better resolution in the separation of a series of phenols and anilines. Increasing the thickness of C8-PHEMA coatings by a factor of 2 enhances resolution for several solute pairs, presumably because of an increase in the effective stationary phase to mobile phase volume ratio. Thus, this work demonstrates that thick polymer brushes provide a tunable stationary phase with a much larger phase ratio than is available from monolayer wall coatings. Through appropriate choice of derivatizing reagents, these polymer brushes should allow separation of a wide range of neutral molecules as well as compounds with similar electrophoretic mobilities. 相似文献
9.
Monolithic materials have become a well-established format for stationary phases in the field of capillary electrochromatography. Four types of monoliths, namely particle-fixed, silica-based, polymer-based, and molecularly imprinted monoliths, have been utilized as enantiomer-selective stationary phases in CEC. This review summarizes recent developments in the area of monolithic enantiomer-selective stationary phases for CEC. The preparative procedure and the characterization of these columns are highlighted. In addition, the disadvantages and limitations of different monolithic enantiomer-selective stationary phases in CEC are briefly discussed. 相似文献
10.
The applicability of capillary electrochromatography (CEC) using packed capillary column to enantiomer separations was investigated. As chiral stationary phases, OD type packing materials of 5 and 3 microm particle diameters, originally designed for conventional high-performance liquid chromatography (HPLC) were employed. The chiral packing materials were packed by a pressurized method into a 100 microm I.D. fused-silica capillary. Several racemic enantiomers, such as acidic, neutral and basic drug components, were successfully resolved, typically by using acidic or basic solutions containing acetonitrile as mobile phases. The separation efficiencies for some enantiomers in the chiral CEC system using the 5 microm OD type packing were superior to those obtained in HPLC using chiral packings. The plate heights obtained for several enantiomers were 8-13 microm or the reduced plate height of 1.6-2.6, which indicates the high efficiency of this chiral CEC system. 相似文献
11.
Preparation of stationary phases for open-tubular capillary electrochromatography using the sol-gel method 总被引:1,自引:0,他引:1
Capillary electrochromatography requires the deposition of a stationary phase inside the capillary. In this paper the sol-gel method is proposed for this purpose. The gels were prepared externally and injected into a fused-silica capillary, where anchorage to the capillary wall was possible through condensation reactions between the silanol groups of the capillary wall and the residual silanol groups the gel. Contrary to a commonly used practice, alkaline pretreatment of the inner capillary wall prior to the introduction and anchoring of the gel was found to be only marginally effective in improving the mechanical stability of the column. The influence of various parameters, such as the pH, the water content, the presence of alcohol (ethanol) on the formation of tetraethoxysilane (TEOS)-n-octyltriethoxysilane (C8-TEOS) hybrid gels of varied composition is discussed. The pH and the amount of water present were found to be the determining factors in the preparation of a stable gel with the desired mechanical and chromatographic properties. By carrying out the gel formation at 80 degrees C, capillary columns could be produced in 2.5 h. While an acidic pH was required during (external) gel formation, subsequent treatment of the gel inside the capillary with an alkaline solution ('aging') was found to improve separation and stationary phase capacity significantly. The capillary columns were subsequently used to separate a mixture of polycyclic aromatic hydrocarbons in less than 3 min. 相似文献
12.
Chiral separation of basic compounds was achieved by using 75 or 100 microm ID fused-silica capillaries packed with a vanoomycin-modified diol silica stationary phase. The capillary was firstly packed for about 12 cm with a slurry mixture composed of diolsilica (3:1) then with the vancomycin modified diol-silica (3:1) (23 cm), and finally with diol-silica (3:1) for about 2 cm. Frits were prepared by a heating wire at the two ends of the capillary; the detector window was prepared at 8.5 cm from the end of the capillary where vancomycin was not present. The influence of the mobile phase composition (pH and concentration, organic modifier type and concentration) on the velocity of the electroosmotic flow, chiral resolution and enantioselectivity was studied. Good enantiomeric resolution was achieved for atenolol, oxprenolol, propranolol, and venlafaxine using a mobile phase composition of 100 mM ammonium acetate solution (pH 6)/water/acetonitrile (5:5:90 v/v/v) while for terbutaline a mixture of 5:15:80 v/v/v provided the best separations. The use of methanol instead of acetonitrile caused a general increase of enantiomer resolution of the studied compounds together with a reduction of efficiency and detector response. However, the combination of acetonitrile and methanol in the mobile phase (as, e.g., 10% methanol and 80% acetonitrile) allowed to improve the enantiomer resolution with satisfactory detector response. 相似文献
13.
Native beta- and gamma-cyclodextrin bound to silica (ChiraDex-beta and ChiraDex-gamma) were packed into capillaries and used for enantiomer separation by capillary electrochromatography (CEC) under aqueous and nonaqueous conditions. Negatively charged analytes (dansyl-amino acids) were resolved into their enantiomers by nonaqueous CEC (NA-CEC). The addition of a small amount of water to the nonaqueous mobile phase enhanced the enantioselectivity but increased the elution time. The choice of the background electrolyte (BGE) determined the direction of the electroosmotic flow (EOF). With 2-(N-morpholino) ethanesulfonic acid (MES) or triethylammonium acetate (TEAA) as BGE an inverse EOF (anodic EOF) was observed while with phosphate a cathodic EOF was found. The apparent pH (pH*), the concentration of the BGE, and the nature of the mobile phase strongly influenced the elution time, the theoretical plate number and the chiral separation factor of racemic analytes. 相似文献
14.
A novel monolithic silica column with zwitterionic stationary phase was prepared by in-situ covalent attachment of phenylalanine to a 3-glycidoxypropyltriethoxysilane-modified silica monolith. Due to the zwitterionic nature of the resulting stationary phase, the density and sign of the net surface charge, and accordingly the direction and magnitude of electroosmotic flow in this column during capillary electrochromatography could be manipulated by adjusting the pH values of the mobile phase. CEC separations of various acidic and basic compounds were performed on the prepared column in anodic and weakly cathodic EOF modes, respectively. The peak tailing of basic compounds in CEC on a silica column could be alleviated at optimized buffer compositions. Besides the electrophoretic mechanism and weak hydrophobic interaction, weak cation- and anion-exchange interactions are also involved in the separations of acids and bases, respectively, on the zwitterionic column. 相似文献
15.
Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography 总被引:3,自引:0,他引:3
A method is described for the synthesis of rigid, macroporous polymers (monoliths) to be used as stationary phases in capillary electrochromatography (CEC). The procedure reproducibly results in columns with good mechanical and chemical stability. Once the procedure was optimized, it yielded the desired CEC columns in nearly 100% of the cases. The batch-to-batch standard deviation of the migration of the electroosmotic flow (EOF) marker for nine randomly chosen columns was 5%. The polymerization is carried out inside the capillary, an aqueous phase is used as solvent. Monomers based on acrylamides with varying hydrophilicity were used to introduce the interactive moieties together with piperazine diacrylamide as cross-linker and vinylsulfonic acid as provider of the charged, EOF-producing moieties. The pore size of the monoliths was adjusted by adding varying amounts of ammonium sulfate to the reaction mixture. In this manner, the average pore size of a given monolith could be reproducibly adjusted to values ranging from 50 nm to 1.3 microm. The procedure was optimized for four particular types of monoliths, which differed in hydrophobicity. The latter was adjusted by introducing suitable co-monomers, such as alkyl chain-bearing molecules, into the monolithic structure. Attempts to systematically investigate the chromatographic behavior of the monolithic stationary phases were made, using a model mixture of aromatic compounds as sample. The standard deviations for the run-to-run reproducibility of the retention times for unretained and retained analytes were <1.5%. Flat Van Deemter curves were measured even at elevated flow-rates (2 mm/s). Plate heights between 10 and 15 microm were measured in this range. The retention order was taken as the principal indication for the chromatographic mode. The separation was found to be governed neither by pure reversed-phase nor by pure normal-phase chromatography, even on monoliths, where large amounts of C6 ligands had been introduced. 相似文献
16.
Monolithic stationary phases for liquid chromatography and capillary electrochromatography 总被引:8,自引:0,他引:8
A monolithic stationary phase is the continuous unitary porous structure prepared by in situ polymerization or consolidation inside the column tubing and, if necessary, the surface is functionalized to convert it into a sorbent with the desired chromatographic binding properties [J. Chromatogr. A 855 (1999) 273]. Monolithic stationary phases have attracted considerable attention in liquid chromatography and capillary electrochromatography in recent years due to their simple preparation procedure, unique properties and excellent performance, especially for separation of biopolymers. This review summarizes the preparation, characterization and applications of the monolithic stationary phases. In addition, the disadvantages and limitations of the monolithic stationary phases are also briefly discussed. 相似文献
17.
This review surveys the recent progress in the adsorbed stationary phases for capillary electrochromatography (CEC). Adsorption-based methods for preparation of stationary phase are novel approaches in CEC, which allow rapid and facile preparing stationary phases with desirable selectivity onto an open-tubular fused-silica capillary, a bare-silica or ion-exchange packed column or a monolithic silica or polymer column. A variety of adsorbing agents have been developed as adsorbed stationary phases, including ionic long-chain surfactant, protein, peptide, amino acid, charged cyclodextrin (CD), basic compound, aliphatic ionene, and ion-exchange latex particle. The adsorbed stationary phases have been applied to separation of neutral, basic and acidic organic compounds, inorganic anions and enantiomers. They have also been applied to on-line sample concentration, fast separation and study of the competitive binding of enantiomers with protein. 相似文献
18.
Summary Polymerisation of bicontinuous microemulsions yields porous monolithic structures with well defined pore sizes that are potentially
suitable for use as stationary phases for capillary electrochromatography (CEC). A variety of pore sizes can be achieved by
altering the composition of the microemulsion, which typically consists of butyl methacrylate (BMA) and ethylene glycol dimethacrylate
(EGDMA) as the polymerisable oil phase. The aqueous phase consists of water, a surfactant (sodium dodecyl sulphate, SDS) and
a co-surfactant (1-propanol). 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) is also added to provide charges along
the polymer backbone to allow electroosmotic flow (EOF) to occur. SEM analysis shows that in-situ polymerisation yields a
monolithic structure with a porous topography. Investigations have shown that these monoliths are easy to prepare, robust
and suitable for the separation of phthalates. They generate higher linear velocities than are achieved using the silica based
HPLC packings normally used for CEC. 相似文献
19.
Chiral monolithic silica capillary columns were prepared by immobilization of amylose-3,5-dimethylphenylcarbamate (ADMPC) bearing a small fraction of 3-(triethoxysilyl)propyl residues through intermolecular polycondensation of the triethoxysilyl groups. The obtained columns were used for chiral separations in capillary electrochromatography (CEC). The effects of the silica monolith nature and the used chiral selector concentration on the resulting enantiomeric separations were investigated. Fifteen chiral compounds, including acidic, neutral, and basic substances were evaluated and twelve showed partial or baseline separation at some of the different conditions tested. These results demonstrated the promising applicability of ADMPC-immobilized monolithic silica columns in CEC enantioseparations, but also revealed the need for further improvements on the level of baseline separations and efficiencies. 相似文献
20.
N. C. Gillott M. R. Euerby C. M. Johnson D. A. Barrett P. N. Shaw 《Chromatographia》2000,51(3-4):167-174
Summary The capillary electrochromatographic (CEC) separation of a range of pharmaceutical bases was investigated on a commercially
available silica stationary phase using aqueous mobile phases. The effects of mobile phase composition, buffer pH, applied
voltage, and buffer anion on the retention behaviour of these bases were studied. Promising chromatography was obtained at
pH 7.8 but was later found to be irreproducible. However, successful and reproducible chromatography of the bases was achieved
at pH 2.3.
We have previously demonstrated that the addition of mobile phase additives such as TEA-phosphate at low pH values has resulted
in excellent CEC analysis of bases on reversed-phase packing materials. The same approach was applied to the analysis of bases
on the silica phase in order to improve peak shape. Excellent chromatography was obtained for the analysis of strong pharmaceutical
bases such as benzylamine, nortriptyline and diphenhydramine.
The experimental investigations have shown that the CEC separation of a range of pharmaceutical bases can routinely be achieved
with excellent peak shapes and peak efficiencies as high as 320,000 plates m−1. 相似文献