首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for continuous global minimization problems, acronymed SCM, is introduced. This method gives a simple transformation to convert the objective function to an auxiliary function with gradually fewer local minimizers. All Local minimizers except a prefixed one of the auxiliary function are in the region where the function value of the objective function is lower than its current minimal value. Based on this method, an algorithm is designed which uses a local optimization method to minimize the auxiliary function to find a local minimizer at which the value of the objective function is lower than its current minimal value. The algorithm converges asymptotically with probability one to a global minimizer of the objective function. Numerical experiments on a set of standard test problems with several problems' dimensions up to 50 show that the algorithm is very efficient compared with other global optimization methods.  相似文献   

2.
单调优化是指目标函数与约束函数均为单调函数的全局优化问题.本文提出一种新的凸化变换方法把单调函数化为凸函数,进而把单调优化问题化为等价的凸极大或凹极小问题,然后采用Hoffman的外逼近方法来求得问题的全局最优解.我们把这种凸化方法同Tuy的Polyblock外逼近方法作了比较,通过数值比较可以看出本文提出的凸化的方法在收敛速度上明显优于Polyblock方法.  相似文献   

3.
陈忠  费浦生 《数学研究》2003,36(1):71-74
[1]中提出了求解连续函数f(x)总体极小值的均值算法,并证明了算法的全局收敛性.若假设f(t)是定义在某可测集G上的可测函数,本证明了均值算法产生的迭代序列全局收敛到f(t)的本质极小值,若进一步假设函数f(t)满足测度Lipschitz条件,还证明了求可测函数的均值算法是线性收敛的.  相似文献   

4.
求非光滑全局优化问题的区间算法   总被引:2,自引:0,他引:2  
本文通过区间工具和目标函数的特殊导数提出了一个非光滑全局优化问题的区间算法,所提出的方法能给出问题的全部全局极小点及全局极小值,理论分析和数值结构均表明本文方法是有效的。  相似文献   

5.
The filled function method is considered as an efficient approach to solve the global optimization problems. In this paper, a new filled function method is proposed. Its main idea is as follows: a new continuously differentiable filled function with only one parameter is constructed for unconstrained global optimization when a minimizer of the objective function is found, then a minimizer of the filled function will be found in a lower basin of the objective function, thereafter, a better minimizer of the objective function will be found. The above process is repeated until the global optimal solution is found. The numerical experiments show the efficiency of the proposed filled function method.  相似文献   

6.
《Optimization》2012,61(6):637-659
The application of a novel parametrization technique to the optimization of aircraft shapes is presented. This class-shape-refinement transformation (CSRT) technique combines an analytical function (class function), a set of Bernstein polynomials (shape function) and a B-spline (refinement function) and can be used to model various aircraft components. It allows for both global and local control of a shape and forms a very efficient and intuitive way of mathematically describing aircraft parts. A parametric study was performed that shows the behaviour of the shape as a function of a number of different parameters, such as total number of shape variables and Bernstein/B-spline coefficient ratio. The CSRT method was used to approximate a typical aircraft wing cross-section and the results showed a very non-linear relationship between the number of shape variables and the error of the approximation, expressed in terms of a correlation factor. This behaviour has been thoroughly analysed. Additionally, optimization results were obtained that show that the CSRT method was successfully coupled to an aerodynamic flow solver. The objective of the optimization runs was to maximize lift-to-drag ratio, but in principle any objective function could be used as long as its input follows from the aerodynamic analysis. The optimization algorithm is capable of largely removing the shock wave on an airfoil at a typical cruise Mach number.  相似文献   

7.
李博  鲁殿军 《数学杂志》2014,34(4):773-778
本文研究了全局最优化问题.利用构造填充函数的方法,提出了一个新的无参数填充函数,它是目标函数的一个明确表达式.得到了一个新的无参数填充函数算法,数值试验结果表明该填充函数算法是有效的,从而推广了填充函数算法在求解全局最优化问题方面的应用.  相似文献   

8.
A two level global optimization algorithm for multidimensional scaling (MDS) with city-block metric is proposed. The piecewise quadratic structure of the objective function is employed. At the upper level a combinatorial global optimization problem is solved by means of branch and bound method, where an objective function is defined as the minimum of a quadratic programming problem. The later is solved at the lower level by a standard quadratic programming algorithm. The proposed algorithm has been applied for auxiliary and practical problems whose global optimization counterpart was of dimensionality up to 24.  相似文献   

9.
A Radial Basis Function Method for Global Optimization   总被引:5,自引:0,他引:5  
We introduce a method that aims to find the global minimum of a continuous nonconvex function on a compact subset of . It is assumed that function evaluations are expensive and that no additional information is available. Radial basis function interpolation is used to define a utility function. The maximizer of this function is the next point where the objective function is evaluated. We show that, for most types of radial basis functions that are considered in this paper, convergence can be achieved without further assumptions on the objective function. Besides, it turns out that our method is closely related to a statistical global optimization method, the P-algorithm. A general framework for both methods is presented. Finally, a few numerical examples show that on the set of Dixon-Szegö test functions our method yields favourable results in comparison to other global optimization methods.  相似文献   

10.
In this paper, a new global optimization method is proposed for an optimization problem with twice-differentiable objective and constraint functions of a single variable. The method employs a difference of convex underestimator and a convex cut function, where the former is a continuous piecewise concave quadratic function, and the latter is a convex quadratic function. The main objectives of this research are to determine a quadratic concave underestimator that does not need an iterative local optimizer to determine the lower bounding value of the objective function and to determine a convex cut function that effectively detects infeasible regions for nonconvex constraints. The proposed method is proven to have a finite ε-convergence to locate the global optimum point. The numerical experiments indicate that the proposed method competes with another covering method, the index branch-and-bound algorithm, which uses the Lipschitz constant.  相似文献   

11.
李博  杜杰  万立娟 《数学杂志》2016,36(4):851-858
本文研究了一类非凸最优化问题的凸化方法与最优性条件的问题.利用构造含有参数的函数变换方法,将具有次正定性质的目标函数凸化,并获得了这一类非凸优化问题全局最优解的充要条件,推广了凸化方法在求解全局最优化问题方面的应用.  相似文献   

12.
Global optimization problem is known to be challenging, for which it is difficult to have an algorithm that performs uniformly efficient for all problems. Stochastic optimization algorithms are suitable for these problems, which are inspired by natural phenomena, such as metal annealing, social behavior of animals, etc. In this paper, subset simulation, which is originally a reliability analysis method, is modified to solve unconstrained global optimization problems by introducing artificial probabilistic assumptions on design variables. The basic idea is to deal with the global optimization problems in the context of reliability analysis. By randomizing the design variables, the objective function maps the multi-dimensional design variable space into a one-dimensional random variable. Although the objective function itself may have many local optima, its cumulative distribution function has only one maximum at its tail, as it is a monotonic, non-decreasing, right-continuous function. It turns out that the searching process of optimal solution(s) of a global optimization problem is equivalent to exploring the process of the tail distribution in a reliability problem. The proposed algorithm is illustrated by two groups of benchmark test problems. The first group is carried out for parametric study and the second group focuses on the statistical performance.  相似文献   

13.
The quadratic knapsack problem (QKP) maximizes a quadratic objective function subject to a binary and linear capacity constraint. Due to its simple structure and challenging difficulty, it has been studied intensively during the last two decades. This paper first presents some global optimality conditions for (QKP), which include necessary conditions and sufficient conditions. Then a local optimization method for (QKP) is developed using the necessary global optimality condition. Finally a global optimization method for (QKP) is proposed based on the sufficient global optimality condition, the local optimization method and an auxiliary function. Several numerical examples are given to illustrate the efficiency of the presented optimization methods.  相似文献   

14.
In this paper, we propose a new method, namely the level-value estimation method, for finding global minimizer of continuous optimization problem. For this purpose, we define the variance function and the mean deviation function, both depend on a level value of the objective function to be minimized. These functions have some good properties when Newton’s method is used to solve a variance equation resulting by setting the variance function to zero. We prove that the largest root of the variance equation equals the global minimal value of the corresponding optimization problem. We also propose an implementable algorithm of the level-value estimation method where importance sampling is used to calculate integrals of the variance function and the mean deviation function. The main idea of the cross-entropy method is used to update the parameters of sample distribution at each iteration. The implementable level-value estimation method has been verified to satisfy the convergent conditions of the inexact Newton method for solving a single variable nonlinear equation. Thus, convergence is guaranteed. The numerical results indicate that the proposed method is applicable and efficient in solving global optimization problems.  相似文献   

15.
Penalty function is an important tool in solving many constrained optimization problems in areas such as industrial design and management. In this paper, we study exactness and algorithm of an objective penalty function for inequality constrained optimization. In terms of exactness, this objective penalty function is at least as good as traditional exact penalty functions. Especially, in the case of a global solution, the exactness of the proposed objective penalty function shows a significant advantage. The sufficient and necessary stability condition used to determine whether the objective penalty function is exact for a global solution is proved. Based on the objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions. Furthermore, the sufficient and necessary calmness condition on the exactness of the objective penalty function is proved for a local solution. An algorithm is presented in the paper in finding a local solution, with its convergence proved under some conditions. Finally, numerical experiments show that a satisfactory approximate optimal solution can be obtained by the proposed algorithm.  相似文献   

16.
A fast descent algorithm, resorting to a “stretching” function technique and built on one hybrid method (GRSA) which combines simulated annealing (SA) algorithm and gradient based methods for large scale global optimizations, is proposed. Unlike the previously proposed method in which the original objective functions remain unchanged during the whole course of optimization, the new method firstly constructs an auxiliary function on one local minimizer obtained by gradient based methods and then SA is executed on this constructed auxiliary function instead of on the original objective function in order that we can improve the jumping ability of SA algorithm to escape from the currently discovered local minimum to a better one from which the gradient based methods restart a new local search. The above procedure is repeated until a global minimum is detected. In addition, corresponding to the adopted “stretching” technique, a new next trial point generating scheme is designed. It is verified by simulation especially on large scale problems that the convergence speed is greatly accelerated, which is its main difference from many other reported methods that mostly cope with functions with less than 50 variables and does not apply to large scale optimization problems. Furthermore, the new algorithm functions as a global optimization procedure with a high success probability and high solution precision.  相似文献   

17.
We propose a modified stochastic ruler method for finding a global optimal solution to a discrete optimization problem in which the objective function cannot be evaluated analytically but has to be estimated or measured. Our method generates a Markov chain sequence taking values in the feasible set of the underlying discrete optimization problem; it uses the number of visits this sequence makes to the different states to estimate the optimal solution. We show that our method is guaranteed to converge almost surely (a.s.) to the set of global optimal solutions. Then, we show how our method can be used for solving discrete optimization problems where the objective function values are estimated using either transient or steady-state simulation. Finally, we provide some numerical results to check the validity of our method and compare its performance with that of the original stochastic ruler method.  相似文献   

18.
三层前向人工神经网络全局最优逼近   总被引:6,自引:0,他引:6  
提出了求解不等式约束非线性优化问题的群体复合形进化算法 ,提出的算法能充分利用目标函数值的信息、优化搜索过程具有较强的方向性和目标性 ,收敛速度较快 ,且是全局优化算法 ;将群体复合形进化算法应用于三层前向人工神经网络逼近 ,提出了三层前向人工神经网络全局最优逼近算法 ;将三层前向人工神经网络全局最优逼近算法应用于实例 ,表明了提出的全局最优逼近算法的有效性 .  相似文献   

19.
Value-Estimation Function Method for Constrained Global Optimization   总被引:5,自引:0,他引:5  
A novel value-estimation function method for global optimization problems with inequality constraints is proposed in this paper. The value-estimation function formulation is an auxiliary unconstrained optimization problem with a univariate parameter that represents an estimated optimal value of the objective function of the original optimization problem. A solution is optimal to the original problem if and only if it is also optimal to the auxiliary unconstrained optimization with the parameter set at the optimal objective value of the original problem, which turns out to be the unique root of a basic value-estimation function. A logarithmic-exponential value-estimation function formulation is further developed to acquire computational tractability and efficiency. The optimal objective value of the original problem as well as the optimal solution are sought iteratively by applying either a generalized Newton method or a bisection method to the logarithmic-exponential value-estimation function formulation. The convergence properties of the solution algorithms guarantee the identification of an approximate optimal solution of the original problem, up to any predetermined degree of accuracy, within a finite number of iterations.  相似文献   

20.
The problem of approximating the global minimum of a function of two variables is considered. A method is proposed rooted in the statistical approach to global optimization. The proposed algorithm partitions the feasible region using a Delaunay triangulation. Only the objective function values are required by the optimization algorithm. The asymptotic convergence rate is analyzed for a class of smooth functions. Numerical examples are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号