首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
通过数值模拟研究了不同射流缝长度以及射流总压比对端壁横向射流抑制横向二次流动和减小损失作用效果的影响,结果表明:采用与流向具有一定夹角的横向射流可有效抑制端区二次流动,减少角区低能流体堆积,推迟吸力面流动分离,提高出口气流角均匀性。仅采用不足叶栅进口流量0.3%的射流气体,就能使总压损失系数降低11.3%。增加射流缝长度的或者提高射流总压均可增强其减弱分离流动的效果,但射流与横向二次流相互作用导致的冲击和掺混损失也增大。  相似文献   

2.
以50°折转角扩压叶栅为对象,数值研究了端壁射流参数对栅内分离流动的影响规律。结果表明:端壁射流可以有效减弱扩压叶栅内的流动分离,马赫数为0.23时最高可降低9.5%的总压损失;射流诱导旋涡可以阻止通道涡的横向迁移,并将主流高能流体卷入角区,角区流体动量增加;流向涡的位置与强度对控制效果有较大影响,其合理位置是叶栅前方、靠近吸力面,并且强度应适中以避免过大的掺混损失;在入口高马赫数条件下也取得了良好的效果。  相似文献   

3.
采用角区端壁射流控制某进口马赫数为Ma=0.67的高速平面扩压叶栅流动分离。研究了射流轴向位置和角度对叶栅气动性能的影响,结果表明:通过对角区内注入能量可有效减弱流道后部的流动分离,仅采用相当于主流流量0.6%的射流气体,可使得叶栅出口总压损失系数降低10.0%。位于角区内分离起始位置处的射流控制效果最佳;随着角度的增加,射流与来流间的冲击和掺混损失增大,近叶展中部的分离流动加剧,使得流动控制效果减弱。  相似文献   

4.
本文以压气机叶栅为研究对象,在Re=2.4×10~5的情况下,开展了端壁射流/抽吸对于压气机叶栅的损失分布与旋涡结构的研究。结果表明,端壁射流与抽吸都能够显著减弱角区分离。位置与角度是射流的关键因素,当射流位置选取在分离线的渐近线时,角区分离能够得到最优的抑制,能够减少总压损失达22.7%。抽吸流动控制中,位置选取是较为关键的因素,但其对位置的敏感性要弱于射流。  相似文献   

5.
沟槽面对扩压叶栅表面流态的影响   总被引:1,自引:1,他引:0  
采用油流显示技术研究了沟槽面扩压叶栅表面流动的拓扑结构,通过与光滑叶栅壁面流动拓扑图像的比较,发现沟槽面能抑制叶背附面层的发展,减小附面层内低速流体的展向流动,减弱叶背附面层与叶背角区旋涡的相互作用.随后用总压耙对栅后流场进行了测量,和光滑叶栅测量结果相比,沟槽面叶栅端壁区总压损失低,主流区沟槽面叶栅尾迹宽度变小、损失降低,证实该非光滑面能减小叶栅二次流损失.  相似文献   

6.
抽吸布局对弯曲叶栅气动性能的影响   总被引:1,自引:0,他引:1  
为了充分发挥附面层抽吸对叶栅流动的控制作用,通过数值模拟,将两种典型的附面层抽吸槽布局与不同弯曲叶片相结合以研究复杂三维气动布局对扩压叶栅气动性能的影响。全叶高的吸力面抽吸能有效抑制吸力面中部的附面层发展,对降低叶栅主流损失最为有效;结合一定的叶片正弯曲,在叶片吸力面吸除进口流量2.27%的流体,最优的弯曲吸附式叶栅能将主流损失下降37.35%;但吸力面抽吸对角区分离的控制作用有限,裕度并未得到有效拓宽。紧贴于吸力面的端壁抽吸能有效吸除端区的低能流体,通过对角区分离的针对性控制,有效拓宽叶栅的工作范围;结合较小的叶片弯曲,仅在端区吸除进口流量1.48%的流体,便可将叶片的有效正攻角提高129.7%。  相似文献   

7.
本文采用数值模拟的方法研究了单孔以及双孔射流旋涡发生器(VGJs)对高亚音速(Ma=0.67)压气机叶栅内气动性能的影响,同时对双孔射流参数对控制效果的影响进行了分析,并对控制前后栅内流场以及主要旋涡结构的变化进行了详细的探讨。计算结果表明:采用单孔以及同向双孔射流均有效的降低了总压损失系数,增强了气流折转能力,有效的改善了端区流动。相对距离对VGJs的控制效果影响较小,但对倾角的变化较为敏感。单双孔射流的控制机制基本一致,采用射流旋涡发生器后,端壁附面层横向迁移被有效的抑制,通道涡、集中脱落涡,壁面涡以及壁角涡被削弱,同时在吸力面侧形成诱导涡,附面层分离被推迟。  相似文献   

8.
来流附面层对大转角扩压叶栅气动性能的影响   总被引:2,自引:0,他引:2  
实验对比了低速条件下抽吸来流附面层前后某大转角扩压叶栅性能的变化。在叶栅壁面进行了墨迹流动显示,并对叶栅出口截面参数进行了测量。结果表明,入口附面层主要影响的区域是损失比较严重的吸力面/端壁角区。减薄大转角扩压叶栅的入口附面层可有效抑制栅内端壁附近的横向二次流、抑制角区分离、降低损失。当吸气量为入口流量的2.5%时,总...  相似文献   

9.
采用NURBS曲面造型方法,在轴对称端壁上叠加径向高度变化量构造非轴对称端壁。采用最优拉丁超立方设计的方法,经过两轮实验设计,寻求性能较优的设计方案。结果分析表明:基于最优拉丁超立方的实验设计方法,定向搜寻透平叶栅的非轴对称端壁优化设计方案,是可行的。与圆柱端壁相比,优化后涡轮叶栅通道出口面积平均二次流动能减小5.48%,总压损失系数减小了1.63%,端壁换热状况局部有改善。非轴对称端壁通过改变端壁的静压分布削弱了涡轮叶栅通道中马蹄涡、通道涡的强度。非轴对称端壁使通道内靠近进口段和出口段端壁换热被削弱,尾迹区换热有所增强。  相似文献   

10.
对带有孔隙射流的某大折转角直扩压叶栅性能进行了实验研究,分析了不同位置孔隙射流对壁面静压及极限流线的影响.结果表明,孔隙射流能够改善角区流动,同时降低叶片中部损失;最佳开孔位置位于25%相对叶高处,总压损失系数相对无孔隙射流叶栅降低4.9%;孔隙位置对端壁静压的影响不大.  相似文献   

11.
为揭示端壁凹槽控制高速扩压叶栅角区分离、降低叶栅气动损失的物理机制,采用数值方法研究了高速扩压叶栅NACA65-K48附加具有不同轴向位置和横向长度的端壁凹槽时叶栅的流场结构和气动特性.结果 表明:叶栅出口总压损失系数最大降低8.08%,静压升约提高0.67%.近端壁气流在凹槽内部诱导出复杂旋涡结构,该旋涡结构反过来为...  相似文献   

12.
本文提出一种将蜂窝结构直接布置在涡轮动叶顶部的抑制涡轮径向间隙泄漏流动新措旌,数值研究了有/无蜂窝叶对涡轮平面叶栅间隙泄漏流场的影响。结果表明,蜂窝叶顶使得进入蜂窝腔的间隙流体形成旋涡运动,对间隙流具有能量耗散的作用,形成的径向射流类似于"气动栅栏",增加间隙内流体的运动阻力,进而对间隙泄漏流产生有效的抑制效果。与常规无蜂窝平顶叶栅相比,蜂窝叶顶叶栅的相对泄漏流量减低了约10%,形成的泄漏涡尺寸减小,叶栅出口下游总损失降低了4%。  相似文献   

13.
端壁翼刀降低叶栅损失机理的实验研究   总被引:1,自引:0,他引:1  
通过实验研究和拓扑分析的方法,分析了安装端壁翼刀后的压气机叶栅内流场的旋涡结构和演化过程.结果表明,安装翼刀后,在翼刀的安装位置产生了一对方向相反的旋涡,通道涡的强度减弱;马蹄涡的吸力面分支与叶栅吸力面相交的位置向下游推移,沿叶高向叶片中部流动的范围缩短,进而叶栅吸力面壁角区的流动得到了改善,降低了叶栅总损失.  相似文献   

14.
为探究进口附面层形式对轴流压气机叶栅端区流动特性的影响,本文以某高亚声速压气机叶栅为研究对象,基于数值方法对比分析常规和倾斜两种进口附面层形式对叶栅角区分离和叶尖泄漏流流动特性以及总体性能的影响。结果表明:进口倾斜附面层使端区来流的攻角和进口速度增加。在无叶尖间隙时,倾斜附面层能够缩小角区分离的轴向和周向范围,提高扩压能力,相比常规附面层工况,总压损失降低6.3%;1%叶高间隙下,倾斜附面层能够降低叶尖泄漏流相关损失并减少尾迹与主流的掺混损失,总压损失较常规附面层降低15.3%。  相似文献   

15.
已有的数值研究表明叶身/端壁融合设计能有效推迟、减弱或消除压气机角区分离,但实验数据缺乏。为了弥补这一不足,本文针对一42°折转角的NACA65扩压叶栅进行了吸力面叶身/端壁融合设计,并首次在低速平面叶栅风洞中进行了对比实验,证实了叶身/端壁融合扩压叶栅性能提升能力。基于实验结果,进一步校验了RNG-KE、SST等不同湍流模型的模拟精度,并基于SST模型结果揭示了叶身/端壁融合设计的作用机理。实验结果表明:叶身/端壁融合扩压叶栅能在设计攻角及正攻角下改进叶栅性能,提高总压损失系数7%~8%。数值结果表明:融合的加入重新组织了端区流场,避免了流体在叶栅后部吸力面角区内的过度堆积而发生的强三维分离,有效缓解了原型叶栅高损失流动。  相似文献   

16.
本文结合实验和数值方法,采用双侧带倒角,单侧带倒角以及一侧带间隙一侧带倒角3种不同倒角布局形式,探究了倒角对压气机角区流动和损失的影响。结果表明:加倒角后,叶栅端部局部周向压力梯度增加,有利于气流克服流动产生的离心力,避免了气流在吸力面较早发生分离,从而一定程度上可以抑制压气机角区分离。单侧倒角以及一侧间隙一侧倒角情况,倒角侧角区分离减小而另一侧的角区分离或泄漏损失会增大。发生角区分离时,端部倒角存在还会导致叶栅尾迹损失有所增加,但由于角区流动改善促使端部损失减小更为显著,叶栅整体损失会下降。  相似文献   

17.
非轴对称端壁改善涡轮叶栅流场研究   总被引:1,自引:0,他引:1  
以Pack B涡轮平面叶栅为研究对象,采用非轴对称端壁造型方法,以减少涡轮叶栅总压损失为优化目标,进行了涡轮叶栅的非轴对称端壁优化设计,优化后的总压损失减小了11.83%。通过对叶栅的下端壁以及上下端壁进行非轴对称造型并与原型光壁模型进行全叶高流场对比分析表明:非轴对称造型对几乎全叶高的总压损失分布产生影响,大幅减小了20%和80%叶高附近的总压损失,对气流角和下游涡强度的影响局限在近造型壁面侧的30%叶高内。  相似文献   

18.
在小转角透平叶栅中,端部横向二次流损失在总损失中占主要比例。对于此类叶栅采用倾斜叶片,压力面与端壁成锐角侧的流动能得到改善。采用压力面与两端壁均成锐角的正弯叶片,可将锐角侧的改善作用引入同一叶栅。对于大转角透平叶栅,上、下通道涡的形成、发展及汇合在叶栅中部产生的二次旋涡损失是总损失的主要部分。在这种情况下,要弄清叶片的倾斜是否仍能改善锐角侧的流动,叶片怎样弯曲才能减少二次旋涡损失,仅测量栅前与栅后流场是远远不够的,必须详细测量流道内部的流动。  相似文献   

19.
攻角对端壁缝隙泄漏流气膜冷却的影响   总被引:1,自引:0,他引:1  
张扬  袁新 《工程热物理学报》2012,(12):2080-2083
本文中的实验在高压涡轮进口导叶平面叶栅中完成,叶栅端壁前缘开有模拟燃烧室涡轮连接处的缝隙。实验中采用GE-E~3高压涡轮进口导叶作为研究对象,缝隙与端壁表面夹角为30°。进口雷诺数(基于叶片轴向弦长和进口气流速度)为3.5×10~5,进口马赫数为0.1,泄漏流流量比为0.5%和2.0%。气膜有效度通过压力敏感漆(Pressure Sensitive Paint,PSP)进行测量。实验结果表明随泄漏流流量比的增加,端壁表面的平均气膜有效度有所增加;当来流攻角从i=+10°变化至i=-10°时,叶片前缘吸力面附近的端壁气膜有效度降低,但在整个端壁表面气膜有效度对攻角变化并不敏感。  相似文献   

20.
采用数值模拟和实验方法,对比分析了不同端壁间隙下平面叶栅攻角损失特性与角区流动结构的关联。各间隙情况下,当来流攻角大于某一数值时,角区失速的发生使得叶栅总压损失呈突跃式增加。小于该来流攻角时,无间隙叶栅损失最小。大于该来流攻角时,无间隙叶栅损失最大。分析表明,间隙的存在可以抑制间隙侧角区分离,并同时推迟无间隙侧角区失速的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号