共查询到20条相似文献,搜索用时 0 毫秒
1.
在极端条件下,固态氢会经历一系列相变,理论预测其在足够高的压力下会演变为金属。由于金属氢被预测具有室温超导和超流等特性,其研究受到了学界的极大关注。然而,研究金属氢存在巨大的技术挑战:一方面,达到氢金属化的压力条件极为苛刻,至今对冷压下是否已制备出金属氢仍未达成共识;另一方面,超高压下氢的精确表征十分困难,特别是表征固态氢晶体结构的技术手段更是严重滞后。晶体结构作为了解一种材料的最基本信息,对其认知的匮乏阻碍了理解氢在高压下如何逐步演化为金属氢的过程。为此,着眼于超高压氢的晶体结构测量,发展了一套先进同步辐射X射线衍射方法,在室温下将氢的晶体结构测量扩展至254 GPa,将相关压力记录提高了一倍。介绍了相关的技术突破,探讨了在超高压下对氢进行晶体结构测量的方法以及存在的问题,以期为在更高压力条件下测量氢的结构信息做好铺垫。 相似文献
2.
3.
光学头是光盘存储系统的核心器件,分离式光学头是把聚焦物镜和光学头的其他部分分离开来,以降低光学头可动部分的重量和体积,提高光学头的飞行速度,实现快速存取的目的。本文设计的相变光盘直接重写分离式光学头.具有结构简单,信号检出方便.易于装配等特点。 相似文献
4.
5.
相变材料可迅速地实现晶态与非晶态之间的相互转换,在相变存储领域具有重要的应用.本文用脉冲激光沉积(PLD)法在Si衬底上制备了高质量的GeTe相变薄膜,并对不同温度下退火的GeTe薄膜进行了结构和光学反射率的表征.实验结果表明,室温沉积的GeTe薄膜为非晶态结构,薄膜的结晶化温度约为250℃.随着退火温度的增加,(202)衍射峰位逐渐向低角方向移动,(202)面间距逐渐增加,这可能与退火薄膜中存在大的压应力有关.薄膜的光学反射率测试表明我们制备薄膜的晶态和非晶态具有高的反射率对比度.以上结果表明PLD法制备的GeTe薄膜在光学相变存储领域具有较好的应用潜能. 相似文献
6.
二氧化钒(VO_2)是电子强关联体系的典型代表,其晶体结构在特定阈值的温度、电场、光照和压力等物理场作用下会发生由单斜金红石结构向四方金红石结构的可逆转变,从而引发绝缘-金属相变.其中,电场诱导VO_2绝缘-金属相变后的电导率可提高2-5个数量级,在可重构缝隙天线、太赫兹辐射以及智能电磁防护材料等领域具有广阔的应用前景,成为近年来人们的研究热点.首先,简要概述了VO_2发生绝缘-金属相变时晶体结构和能带结构的变化,进而从电场诱导VO_2绝缘-金属相变的研究方法、响应时间、临界阈值场强调控以及相变机理几个方面系统总结和评述了近年来国内外学者在该领域的重要发现和研究进展.最后,指出了当前VO_2绝缘-金属相变研究存在的问题,并展望了未来的发展方向. 相似文献
7.
采用双离子束溅射氧化钒薄膜附加热处理的方式制备了纳米二氧化钒薄膜。在热驱动方式下,分别利用四探针测试技术和傅里叶变换红外光谱技术对纳米二氧化钒薄膜的电学与光学半导体-金属相变特性进行了测试与分析。实验结果表明,电学相变特性与光学相变特性之间存在明显的偏差,电学相变温度为63 ℃,高于光学相变温度,60 ℃;电学相变持续的温度宽度较光学相变持续温度宽度宽;在红外光波段,随着波长的增加,纳米二氧化钒薄膜的光学相变温度逐渐增大,由半导体相向金属相转变的初始温度逐渐升高,相变持续的温度宽度变窄。在红外光波段,纳米二氧化钒薄膜的光学相变特性可以通过光波波长进行调控,电学相变特性更适合表征纳米VO2薄膜的半导体-金属相变特性。 相似文献
8.
针对超高压下透明材料的高压离化机理,分析了透明材料中冲击波直接诊断技术的基本方法. 利用Drude-自由电子气模型,分析了不同冲击压力下冲击波阵面反射率的变化. 从理论上比较了不同探针光波长反射率的区别,发现探针光波长为660 nm时比探针光波长为532 nm时获得的冲击波阵面反射率要高. 对探测器"致盲"问题也进行了研究. 通过分析反射信号的时间顺序和强度大小,发现"致盲"效应是由X光对透明窗口离化引起的. 同时,发现方波驱动脉冲平台的前沿到达时刻和X光离化效应出现的时刻相同,冲击波信号到达时刻晚于X光离化时刻. 通过实验结果,得到蓝宝石中冲击波速度为35 km/s时,其波阵面的反射率约为40%. 通过理论分析和实验数据比对的方法,验证了蓝宝石中的减速曲线. 给出了加蓝宝石窗口后的测速公式. 经过和实验对比,确认了测速公式的正确性.
关键词:
冲击波
光学诊断
成像
干涉仪 相似文献
9.
10.
运用第一性原理平面波赝势和广义梯度近似方法,对纤锌矿结构和氯化钠结构GaN的状态方程及其在高压下的相变进行计算研究,分析相变点附近的电子态密度、能带结构和光学性质的变化机制.通过状态方程和焓相等原理得到GaN从纤锌矿到氯化钠结构的相变压强分别为43.9 Gpa和46.0 Gpa;在相变的过程中,GaN由典型的直接带隙半导体转变为间接带隙半导体材料;氯化钠结构GaN相比于纤锌矿结构,介电函数主峰值增强,本征吸收边明显往高能方向移动,氯化钠结构GaN在低能区域的光学性质差于纤锌矿结构. 相似文献
11.
利用第一性原理计算方法,探讨了体相CrI_3在低温斜方六面体结构(■,BiI_3-type)及高压单斜结构(C2/m,AlCl_3-type)的相变、电子结构和光学性质.计算结果显示,半导体CrI_3当压强增加到26.1GPa时,高压导致的晶格畸变致使CrI_3从相■变化到相C2/m;原子之间的错位位移,使导带处的能带发生下移,价带处的能带发生了一定程度的上移,导致带隙减小.两种相的光学性质进一步验证了这些特性. 相似文献
12.
运用第一性原理平面波赝势和广义梯度近似方法, 对闪锌矿结构(ZB)和氯化钠结构(RS) ZnS的状态方程及其在高压下的相变进行计算研究, 分析相变点附近的电子态密度、能带结构和光学性质的变化机理. 结果表明: 通过状态方程得到ZB相到RS相的相变压强值为18.1 GPa, 而利用焓相等原理得到的相变压强值为18.0 GPa; 在结构相变过程中, sp3轨道杂化现象并未消失, RS相ZnS的金属性明显增强; 与ZB相ZnS相比, RS相ZnS的介电常数主峰明显增强, 并向低能方向出现了明显偏移, 使得介电峰向低能方向拓展, 在低能区电子跃迁大大增强.
关键词:
硫化锌
相变
电子结构
光学性质 相似文献
13.
14.
为了探究BeO晶体能否成为冲击波实验中的候选窗口材料,本文采用密度泛函理论(DFT)的第一性原理方法,计算了150 GPa的压力范围内BeO理想晶体和含氧空位点缺陷晶体的光学性质.吸收谱数据显示,BeO高压结构相变对其吸收谱的吸收边几乎没有影响.并且,在150 GPa压力范围内,BeO理想晶体在可见光区没有光吸收行为.氧空位点缺陷的存在将使得其吸收边出现明显的红移现象,但在可见光区仍然没有光吸收(是透明的).波长在532 nm处的折射率数据表明:在BeO的WZ和RS结构相区,其折射率会随着压力增加而缓慢降低,而高压结构相变和氧空位缺陷将使得其折射率显著增大.计算数据分析表明BeO有成为冲击窗口材料的可能,并且本文所获信息将对未来进一步的实验有重要参考价值. 相似文献
15.
16.
采用基于密度泛函理论(DFT)的第一性原理方法, 计算了AlN理想晶体和含铝、氮空位点缺陷晶体在100 GPa压力范围内的光学性质. 波长在532 nm处的折射率计算结果表明:AlN从纤锌矿结构相转变为岩盐矿结构相将导致其折射率增加; 铝空位缺陷将引起AlN岩盐矿结构相的折射率增大, 而氮空位缺陷却导致其折射率降低. 能量损失谱计算数据指明:结构相变使得AlN能量损失谱蓝移、主峰峰值强度增强;铝和氮空位缺陷将导致AlN岩盐矿结构相的能量损失谱主峰进一步蓝移、峰值强度再次增强. 计算预测的结果将为进一步的实验探究提供理论参考. 相似文献
17.
近年来钙钛矿型氧化物材料由于其丰富的光学、电学和磁学性能引起人们极大的关注,特别是钙钛矿型稀土镍酸盐RNiO3(R为稀土离子,R≠La)体系,因具有许多独特的光学性能、不同寻常的电荷有序和磁有序排列以及陡峭的金属-绝缘态相变等,其在开关、热致变色器件和传感器等方面有着重要的应用价值。本文从钙钛矿型稀土镍酸盐RNiO3体系的晶体结构出发,综合介绍RNiO3体系在金属-绝缘态相变、磁电性质以及光学特性等方面的研究进展,并对M-I相变的物理化学机理进行初步的讨论。 相似文献
18.
19.
运用密度泛函理论体系下的投影缀加波方法, 对闪锌矿和朱砂相结构的ZnTe在高压下的状态方程和结构相变进行了研究, 并分析了相变前后的原胞体积、电子结构和光学性质. 结果表明: 闪锌矿结构转变为朱砂相结构的相变压力为8.6 GPa, 并没有出现类似材料高压导致的金属化现象, 而是表现出间接带隙半导体特性. 相变后, 朱砂相结构Zn和Te原子态密度分布均向低能级方向移动, 带隙变小; 轨道杂化增强, 更有利于Te 5p与Zn 3d间的电子跃迁, 介电常数虚部主峰明显增强, 但宏观介电常数不受压力的影响. 相似文献
20.
本文采用第一性原理方法,在100 GPa的压力范围内,计算了GeO_2理想晶体和含锗、氧空位点缺陷晶体的光学性质.吸收谱数据表明,压力诱导的三个结构相变对GeO_2晶体的吸收谱均有影响:第一个相变将导致其吸收边蓝移,而第二和第三相变将使得其吸收边红移.锗和氧空位点缺陷的存在将导致GeO_2的吸收边红移,但氧空位点缺陷引起的红移更明显.尽管如此,分析发现,在100 GPa的压力范围内,压力、相变以及空位点缺陷等因素都不会导致GeO_2晶体在可见光区出现光吸收现象(是透明的).波长在532 nm处的折射率数据显示,在GeO_2的四个相区,其折射率均随压力增加而降低;而且,GeO_2的三个结构相变以及锗、氧空位点缺陷都会导致其折射率有所增大.本文预测,GeO_2有成为冲击光学窗口材料的可能. 相似文献