首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio potential energy surfaces and the corresponding analytical energy functions of the ground 1A' and excited 2A' states for the Li(2(2)P) plus H(2) reaction are constructed. Quasiclassical trajectory calculations on the fitted energy functions are performed to characterize the reactions of Li(2(2)P) with H(2)(v = 0, j = 1) and H(2)(v = 1, j = 1) as well as the reaction when the vibrational energy is replaced by collision energy. For simplicity, the transition probability is assumed to be unity when the trajectories go through the crossing seam region and change to the lower surface. The calculated rotational distributions of LiH(v = 0) for both H(2)(v = 0, j = 1) and H(2)(v = 1, j = 1) reactions are single-peaked with the maximum population at j' = 7, consistent with the previous observation. The vibrational excitation of H(2)(v = 1) may enhance the reaction cross section of LiH(v' = 0) by about 200 times, as compared to a result of 93-107 reported in the experimental measurements. In contrast, the enhancement is 3.1, if the same amount of energy is deposited in the translational states. This endothermic reaction can be considered as an analog of late barrier. According to the trajectory analysis, the vibrational excitation enlarges the H-H distance in the entrance channel to facilitate the reaction, but the excess energy may not open up additional reaction configuration.  相似文献   

2.
A detailed three-dimensional time-dependent quantum dynamical study of the He+H(2) (+)(v=0-3,j=0)-->HeH(+)+H reaction is reported for different vibrational v states of H(2) (+) in its ground rotational (j=0) state over a range of translational E(trans) energies on an accurate ab initio potential energy surface published by Palmieri et al. Plots of reaction probability as a function of total energy E reveal a large number of oscillations indicating the presence of a number of reactive scattering resonances. When averaged over total angular momentum J, some of the oscillations survive, indicating that they may be amenable to experimental observation. A comparison of our present results with our earlier results on the McLaughlin-Thompson-Joseph-Sathyamurthy surface and the experimental results from different research groups reveal a good deal of agreement as well as some discrepancies between theory and experiment at the level of state-selected gas phase dynamics.  相似文献   

3.
A Regge pole analysis is employed to explain the oscillatory patterns observed in numerical simulations of integral cross section for the F+H(2)(v=0,j=0)-->HF(v(')=2,j(')=0)+H reaction in the translational collision energy range 25-50 meV. In this range the integral cross section for the transition, affected by two overlapping resonances, shows nearly sinusoidal oscillations below 38 meV and a more structured oscillatory pattern at larger energies. The two types of oscillations are related to the two Regge trajectories which (pseudo) cross near the energy where the resonances are aligned. Simple estimates are given for the periods of the oscillations.  相似文献   

4.
A three-dimensional time-dependent quantum mechanical approach is used to calculate the reaction probability (P(R)) and the integral reaction cross section (sigma(R)) for both channels of the reaction He + HD+(v = 0, 1, 2, 3; j = 0) --> HeH(D)+ + D(H), over a range of translational energy (E(trans)) on two different ab initio potential energy surfaces (McLaughlin-Thompson-Joseph-Sathyamurthy and Palmieri et al.). The reaction probability plots as a function of translational energy exhibit several oscillations, which are characteristic of the system. The vibrational enhancement of the reaction probability and the integral reaction cross section values are reproduced qualitatively by our calculations, in accordance with the experimental results. The isotopic branching ratio for the reaction decreases in going from v = 0 to v = 1 and then becomes nearly v-independent in going from v = 1 to v =3 on both the surfaces.  相似文献   

5.
Six-dimensional quantum dynamical and quasiclassical trajectory (QCT) calculations are reported for the reaction and vibrationally inelastic scattering of (v = 0,1,j = 0) H(2) scattering from Cu(110), and for the reaction and rovibrationally elastic and inelastic scattering of (v = 1,j = 1) H(2) scattering from Cu(110). The dynamics results were obtained using a potential energy surface obtained with density functional theory using the PW91 functional. The reaction probabilities computed with quantum dynamics for (v = 0,1,j = 0) were in excellent agreement with the QCT results obtained earlier for these states, thereby validating the QCT approach to sticking of hydrogen on Cu(110). The vibrational de-excitation probability P(v=1,j = 0 --> v = 0) computed with the QCT method is in remarkably good agreement with the quantum dynamical results for normal incidence energies E(n) between 0.2 and 0.6 eV. The QCT result for the vibrational excitation probability P(v = 0,j = 0 --> v = 1) is likewise accurate for E(n) between 0.8 and 1 eV, but the QCT method overestimates vibrational excitation for lower E(n). The QCT method gives probabilities for rovibrationally (in)elastic scattering, P(v = 1,j = 1 --> v('),j(')), which are in remarkably good agreement with quantum dynamical results. The rotationally averaged, initial vibrational state-selective reaction probability obtained with QCT agrees well with the initial vibrational state-selective reaction probability extracted from molecular beam experiments for v = 1, for the range of collision energies for which the v=1 contribution to the measured total sticking probability dominates. The quantum dynamical probabilities for rovibrationally elastic scattering of (v = 1,j = 1) H(2) from Cu(110) are in good agreement with experiment for E(n) between 0.08 and 0.25 eV.  相似文献   

6.
A three-dimensional time-dependent quantum mechanical wave packet approach is used to calculate reaction probability (P(R)) and integral reaction cross section (sigma(R)) values for both the channels of the reaction He + HD(+) (v = 1; j = 0, 1, 2, 3) --> HeH(D)(+) + D(H), over a range of translational energy (E(trans)) on the McLaughlin-Thompson-Joseph-Sathyamurthy (MTJS) potential energy surface using centrifugal sudden approximation for nonzero total angular momentum (J) values. The reaction probability plots as a function of translational energy for different J values exhibit several oscillations, which are characteristic of the system. It is shown that HeH(+) is preferred over HeD(+) for large J values and that HeD(+) is preferred over HeH(+) for small J values for all the rotational (j) states studied. The integral reaction cross section for both the channels and therefore the isotopic branching ratio for the reaction depend strongly on j in contrast to the marginal dependence shown by earlier QCT calculations. The computed results are in overall agreement with the available experimental results.  相似文献   

7.
In an attempt to explain the observed nightglow emission from OH(v=10) in the mesosphere that has the energy greater than the exothermicity of the H+O(3) reaction, potential energy surfaces were calculated for reactions of high lying electronic states of O(2)(A (3)Sigma(u) (+) and A' (3)Delta(u)) with atomic hydrogen H((2)S) to produce the ground state products OH((2)Pi)+O((3)P). From collinear two-dimensional scans, several adiabatic and nonadiabatic pathways have been identified. Multiconfigurational single and double excitation configuration interaction calculations show that the adiabatic pathways on a (4)Delta potential surface from O(2)(A' (3)Delta)+H and a (4)Sigma(+) potential surface from O(2)(A (3)Sigma(u) (+))+H are the most favorable, with the zero-point corrected barrier heights of as low as 0.191 and 0.182 eV, respectively, and the reactions are fast. The transition states for these pathways are collinear and early, and the reaction coordinate suggests that the potential energy release of ca. 3.8 eV (larger than the energy required to excite OH to v=10) is likely to favor high vibrational excitation.  相似文献   

8.
We report a dynamics study of the reaction N((2)D) + H(2) (v=0, j=0-5) --> NH + H using the time-dependent quantum wave packet method and a recently reported single-sheeted double many-body expansion potential energy surface for NH(2)(1(2)A' ') which has been modeled from accurate ab initio multireference configuration-interaction calculations. The calculated probabilities for (v=0, j=0-5) are shown to display resonance structures, a feature also visible to some extent in the calculated total cross sections for (v=0, j=0). A comparison between the calculated centrifugal-sudden and coupled-channel reaction probabilities validate the former approximation for the title system. Rate constants calculated using a uniform J-shifting scheme and averaged over a Boltzmann distribution of rotational states are shown to be in good agreement with the available experimental values. Comparisons with other theoretical results are also made.  相似文献   

9.
10.
We have measured differential cross sections (DCSs) for the HD (v(')=1,j(')=2,6,10) products of the H+D(2) exchange reaction at five different collision energies in the range 1.48< or =E(coll)< or =1.94 eV. The contribution from the less energetic H atoms formed upon spin-orbit excitation of Br in the photolysis of the HBr precursor is taken into account for two collision energies, E(coll)=1.84 and 1.94 eV, allowing us to disentangle the two different channels. The measured DCSs agree well with new time-dependent quantum-mechanical calculations. As the product rotational excitation increases, the DCSs shift from backward to sideward scattering, as expected. We also find that the shapes of the DCSs show only a small overall dependence on the collision energy, with a notable exception occurring for HD (v(')=1,j(')=2), which appears bimodal at high collision energies. We suggest that this feature results from both direct recoil and indirect scattering from the conical intersection.  相似文献   

11.
Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data.  相似文献   

12.
We report quantum dynamics calculations of F((2)P)+HCl(v,j)-->HF(v('),j('))+Cl((2)P) and F+DCl(v,j)-->DF(v('),j('))+Cl reactions at cold and ultracold temperatures. The effect of rotational and vibrational excitations of the HCl molecule on the reactivity is investigated. It is found that, in the ultracold regime, vibrational excitation of the HCl molecule from v=0 to v=2 enhances the reactivity by four orders of magnitude. The rotational excitation from j=0 to j=1 decreases the reactivity while the rotational excitation from j=0 to j=2 increases the reactivity. The overall effect of rotational excitation was found to be much smaller than vibrational excitation. The reactivity of the F+DCl system is significantly lower than that of the F+HCl case indicating the importance of quantum tunneling at low energies. For both reactions, Feshbach resonances corresponding to Fcdots, three dots, centered HCl or Fcdots, three dots, centeredDCl triatomic states occur at low energies. We also explored the validity of the coupled-states approximation for cold collisions taking the F+HCl(v=0,j=0) reaction as an illustrative example. It is found that the coupled-states approximation is generally valid for the background scattering even at low energies but it is inadequate to accurately describe the rich resonances in the energy dependence of the cross section resulting from the decay of van der Waals complexes. It is further shown that the coupled-states approximation cannot be used for scattering in the Wigner threshold regime when the molecule is initially in a rotationally excited level.  相似文献   

13.
A time-dependent initial state selected wave packet method has been developed to study the H2(v(1)=10-11,j1=0)+H2'(v2=0,j2=0)-->HH'+HH' four-center (4C) reaction, and two other competing reactions: the H2+H2'-->H+H+H2' collision induced dissociation (CID) and the H2+H2'-->H+HH'+H' single exchange (SE) reaction, in full six dimensions. Initial state-specific total reaction probabilities for these three competing reactions are presented for total angular momentum J=0 and the effects of reagent vibration on reactions are examined. It is found that (a) the CID process is the dominant process over the whole energy range considered in this study, but the 4C and SE processes also have non-negligible probabilities; (b) the SE process has a lower threshold energy than the 4C process, but the SE probability increases slower than the 4C probability as collision energy increases; (c) the vibrational excitation of H2(v1) is much more efficient than translational motion for promoting these processes, in particular to the CID process.  相似文献   

14.
We present the results of a time-dependent quantum mechanical investigation using centrifugal sudden approximation in the form of reaction probability as a function of collision energy (E(trans)) in the range 0.3-3.0 eV for a range of total angular momentum (J) values and the excitation function sigma(E(trans)) for the exchange reaction H(-) + H(2) (v = 0, j = 0) --> H(2) + H(-) and its isotopic variants in three dimensions on an accurate ab initio potential energy surface published recently (J. Chem. Phys. 2004, 121, 9343). The excitation function results are shown to be in excellent agreement with those obtained from crossed beam measurements by Zimmer and Linder for H(-) + D(2) collisions for energies below the threshold for electron detachment channel and somewhat larger than the most recent results of Haufler et al. for (H(-), D(2)) and (D(-), H(2)) collisions.  相似文献   

15.
We present results of time-dependent quantum mechanics (TDQM) and quasiclassical trajectory (QCT) studies of the excitation function for O(3P) + H2(v = 0-3,j = 0) --> OH + H from threshold to 30 kcal/mol collision energy using benchmark potential energy surfaces [Rogers et al., J. Phys. Chem. A 104, 2308 (2000)]. For H2(v = 0) there is excellent agreement between quantum and classical results. The TDQM results show that the reactive threshold drops from 10 kcal/mol for v = 0 to 6 for v = 1, 5 for v = 2 and 4 for v = 3, suggesting a much slower increase in rate constant with vibrational excitation above v = 1 than below. For H2(v > 0), the classical results are larger than the quantum results by a factor approximately 2 near threshold, but the agreement monotonically improves until they are within approximately 10% near 30 kcal/mol collision energy. We believe these differences arise from stronger vibrational adiabaticity in the quantum dynamics, an effect examined before for this system at lower energies. We have also computed QCT OH(v',j') state-resolved cross sections and angular distributions. The QCT state-resolved OH(v') cross sections peak at the same vibrational quantum number as the H2 reagent. The OH rotational distributions are also quite hot and tend to cluster around high rotational quantum numbers. However, the dynamics seem to dictate a cutoff in the energy going into OH rotation indicating an angular momentum constraint. The state-resolved OH distributions were fit to probability functions based on conventional information theory extended to include an energy gap law for product vibrations.  相似文献   

16.
A detailed state-to-state dynamics study was performed to analyze the effects of vibrational excitation and translational energy on the dynamics of the Cl((2)P) + NH(3)(v) gas-phase reaction, effects which are connected to such issues as mode selectivity and Polanyi's rules. This reaction evolves along two deep wells in the entry and exit channels. At low and high collision energies quasi-classical trajectory calculations were performed on an analytical potential energy surface previously developed by our group, together with a simplified model surface in which the reactant well is removed to analyze the influence of this well. While at high energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity by a factor ≈1.1-2.9 with respect to the vibrational ground-state, at low energy the opposite behaviour is found (factor ≈ 0.4-0.9). However, when the simplified model surface is used at low energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Moreover, we find that this reaction exhibits negligible mode selectivity, first because the independent excitation of the N-H symmetric and asymmetric stretch modes, which lie within 200 cm(-1) of each other, leads to reactions with similar reaction probabilities, and second because the vibrational excitation of the reactive N-H stretch mode is only partially retained in the products. For this "late transition-state" reaction, we also find that vibrational energy is more effective in driving the reaction than an equivalent amount of energy in translation, consistent with an extension of Polanyi's rules. Finally, we find that the non-reactive events, Cl((2)P)+NH(3)(v) → Cl((2)P) + NH(3)(v'), lead to a great number of populated vibrational states in the NH(3)(v') product, even starting from the NH(3)(v = 0) vibrational ground state at low energies, which is unphysical in a quantum world. This result is interpreted on the basis of non-conservation of the ZPE per mode.  相似文献   

17.
The reactions of alkaline earth metal atoms, Mg(3s3p 1P1) and Ca(4s4p 1P1), with H2(v = 1, j) are studied using a pump-probe technique combined with stimulated Raman pumping and coherent anti-Stokes Raman spectroscopy. For the Ca(4 1P1) case, the energy deposited in the v = 1 level enlarges the H2 bond distance to help facilitate the reaction without opening an additional pathway. For the Mg(3 1P1) case, the vibrational excitation of H2 leads to enhancement of the low rotational component of the rotational distribution and the MgH(v = 0)/MgH(v = 1) ratio. These results can be predicted with quasi-classical trajectory calculations and interpreted with a kinematic collision model.  相似文献   

18.
We have performed quantum mechanical (QM) dynamics calculations within the independent-state approximation with new benchmark triplet A" and A' surfaces [B. Ramachandran et al., J. Chem. Phys. 119, 9590 (2003)] for the rovibronic state-to-state measurements of the reaction O(3P)+HCl(v=2,j=1,6,9)-->OH(v'j')+Cl(2P) [Zhang et al., J. Chem. Phys. 94, 2704 (1991)]. The QM and experimental rotational distributions peak at similar OH(j') levels, but the QM distributions are significantly narrower than the measurements and previous quasiclassical dynamics studies. The OH(low j) populations observed in the measurements are nearly absent in the QM results. We have also performed quasiclassical trajectory with histogram binning (QCT-HB) calculations on these same benchmark surfaces. The QCT-HB rotational distributions, which are qualitatively consistent with measurements and classical dynamics studies using other surfaces, are much broader than the QM results. Application of a Gaussian binning correction (QCT-GB) dramatically narrows and shifts the QCT-HB rotational distributions to be in very good agreement with the QM results. The large QCT-GB correction stems from the special shape of the joint distribution of the classical rotational/vibrational action of OH products. We have also performed QM and QCT calculations for the transition, O+HCl(v=0,T=300 K)-->OH(v'j')+Cl from threshold to approximately 130 kcal mol(-1) collision energy as a guide for possible future hyperthermal O-atom measurements. We find in general a mixed energy release into translation and rotation consistent with a late barrier to reaction. Angular distributions at high collision energy are forward peaked, consistent with a stripping mechanism. Direct collisional excitation channel cross sections, O+HCl(v=0,T=300 K)-->O+HCl(v'=1), in the same energy range are large, comparable in magnitude to the reactive channel cross sections. Although the (3)A" state dominates most collision processes, above approximately 48 kcal mol(-1), the (3)A' state plays the major role in collisional excitation.  相似文献   

19.
自由基CN、CH、H在燃烧化学、大气化学、天体发光、环境污染等方面占有极为重要的地位,对于这些自由基发光及形成动力学机理的探讨,无疑是重要的.近年来,人们利用亚稳态惰性原子与膨化物碰撞传能,探讨了CN(AB-+X)的化学发光[‘一、发现亚稳态的Ar(‘几,。)原子与H  相似文献   

20.
Photodepletion and action spectra of the laser-induced Ba...FCD3 fragmentation have been measured over the 16 075-16 380 cm(-1) range. The observed band and peak structures allowed us to estimate the vibrational and rotational structures of the excited complex at the transition state configuration. The relative reaction probability P(R)(E) for the intracluster Ba...FCD3 + h nu --> BaF + CD3 reaction has been determined over the cited energy range. P(R)(E) shows a peak structure with an energy spacing of 8.9 cm(-1) which was attributed to an internal rotation of the CD3 group in the intermediate state. A comparison with previous Ba...FCH3 photofragmentation spectra reveals the dynamical role of the internal CX3 (X = H,D) motion which is manifested by the presence of rotational resonances in the laser-induced intracluster reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号