首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption and reactions of CO(2) in the presence of H(2)O and OH species on the TiO(2) rutile (110)-(1×1) surface were investigated using dispersion-corrected density functional theory and scanning tunneling microscopy. The coadsorbed H(2)O (OH) species slightly increase the CO(2) adsorption energies, primarily through formation of hydrogen bonds, and create new binding configurations that are not present on the anhydrous surface. Proton transfer reactions to CO(2) with formation of bicarbonate and carbonic acid species were investigated and found to have barriers in the range 6.1-12.8 kcal∕mol, with reactions involving participation of two or more water molecules or OH groups having lower barriers than reactions involving a single adsorbed water molecule or OH group. The reactions to form the most stable adsorbed formate and bicarbonate species are exothermic relative to the unreacted adsorbed CO(2) and H(2)O (OH) species, with formation of the bicarbonate species being favored. These results are consistent with single crystal measurements which have identified formation of bicarbonate-type species following coadsorption of CO(2) and water on rutile (110).  相似文献   

2.
This study investigates the adsorption and reactions of H(2)O(2) on TiO(2) anatase (101) and rutile (110) surfaces by first-principles calculations based on the density functional theory in conjunction with the projected augmented wave approach, using PW91, PBE, and revPBE functionals. Adsorption mechanisms of H(2)O(2) and its fragments on both surfaces are analyzed. It is found that H(2)O(2) , H(2)O, and HO preferentially adsorb at the Ti(5c) site, meanwhile HOO, O, and H preferentially adsorb at the (O(2c))(Ti(5c)), (Ti(5c))(2), and O(2c) sites, respectively. Potential energy profiles of the adsorption processes on both surfaces have been constructed using the nudged elastic band method. The two restructured surfaces, the 1/3 ML oxygen covered TiO(2) and the hydroxylated TiO(2), are produced with the H(2)O(2) dehydration and deoxidation, respectively. The formation of main products, H(2)O(g) and the 1/3 ML oxygen covered TiO(2) surface, is exothermic by 2.8 and 5.0 kcal/mol, requiring energy barriers of 0.8 and 1.1 kcal/mol on the rutile (110) and anatase (101) surface, respectively. The rate constants for the H(2)O(2) dehydration processes have been predicted to be 6.65 × 10(-27) T(4.38) exp(-0.14 kcal mol(-1)/RT) and 3.18 × 10(-23) T(5.60) exp(-2.92 kcal mol(-1)/RT) respectively, in units of cm(3) molecule(-1) s(-1).  相似文献   

3.
The adsorption and dissociation of NH(3) on the clean and hydroxylated TiO(2) rutile (110) surfaces have been investigated by the first-principles calculations. The monodentate adsorbates such as H(3)N-Ti(a), H(2)N-Ti(a), N-Ti(a), H(2)N-O(a), HN-O(a), N-O(a) and H-O(a), as well as the bidentate adsorbate, Ti-N-Ti(a) can be formed on the clean surface. It is found that the hydroxyl group enhances the adsorption of certain adsorbates on the five-fold-coordinated Ti atoms (5c-Ti), namely H(2)N-Ti(a), HN-Ti(a), N-Ti(a) and Ti-N-Ti(a). In addition, the adsorption energy increases as the number of hydroxyl groups increases. On the contrary, the opposite effect is found for those on the two-fold-coordinated O atoms (2c-O). The enhanced adsorption of NH(x) (x = 1-2) on the 5c-Ti is due to the large electronegativity of the OH group, increasing the acidity of the Ti center. This also contributes to diminish the adsorption of NH(x) (x = 1-2) on the two-fold-coordinated O atoms (2c-O) decreasing its basicity. According to potential energy profile, the NH(3) dissociation on the TiO(2) surface is endothermic and the hydroxyl group is found to lower the energetics of H(2)N-Ti(a)+H-O(a) and HN-Ti(a)+2{H-O(a)}, but slightly raise the energetic of Ti-N-Ti(a)+3{H-O(a)} compare to those on the clean surface. However, the dissociation of NH(3) is found to occur on the hydroxylated surface with an overall endothermic by 31.8 kcal/mol and requires a barrier of 37.5 kcal/mol. A comparison of NH(3) on anatase surface has been discussed. The detailed electronic analysis is also carried out to gain insights into the interaction nature between adsorbate and surface.  相似文献   

4.
The adsorption of glycine (NH2CH2COOH) was examined by scanning tunneling microscopy (STM) on TiO2(110) surfaces at room temperature. A (2x1) ordered overlayer was observed on the TiO2(110)-(1x1) surface. The adsorption of acetic acid and propanoic acid was also investigated on this surface and their STM images were quite similar to that of glycine. Since acetate and propanoate are formed by dissociative adsorption of these acids on TiO2(110), it is proposed that glycine adsorbs in the same way to form a glycinate. The amino group in the glycinate adlayer structurally analogous to those formed from aliphatic carboxylic acids would be extended away from the surface and potentially free to participate in additional reactions. The underlying structure of the TiO2 surface is important in determining the structure of the glycinate adlayer; no ordering of these adsorbates was observed on the TiO2(110)-(1x2) surface.  相似文献   

5.
The adsorption and decomposition of acetonitrile on the TiO2 (110) surface have been investigated with first principles calculations. Our results reveal that both C?N and C? C bonds of acetonitrile become weakened after adsorption. Acetonitrile behaves as an electron donor, and electrons transfer from acetonitrile to substrate is obvious. The reaction mechanism of further decomposition of acetonitrile on TiO2 (110) surface is also investigated, and the result shows that acetonitrile can decompose into CH3 and CN fragments and form OCH3 and NCO groups on the TiO2 (110) surface, which consists with the experimental results. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

6.
Density functional theory (DFT) calculations performed at ONIOM DFT B3LYP/6‐31G**‐MD/UFF level are employed to study molecular and dissociative water adsorption on rutile TiO2 (110) surface represented by partially relaxed Ti25O37 ONIOM cluster. DFT calculations indicate that dissociative water adsorption is not favorable because of high activation barrier (23.2 kcal/mol). The adsorption energy and vibration frequency of both molecularly and dissociatively adsorbed water molecule on rutile TiO2 (110) surface compare well with the values reported in the literature. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

7.
First principles periodic slab calculations based on gradient-corrected density functional theory have been performed to investigate CO oxidation on rutile TiO2(110) at varying O2 coverages (theta = 1, 2, and 3, where theta is defined as the number of O2 per oxygen vacancy). For each coverage we only present the reaction of CO with oxygen species in the most stable configuration. Our results show a significant variation in the oxidation activation energy with O2 coverage.  相似文献   

8.
Studies of the modes of adsorption and the associated changes in electronic structures of renewable organic compounds are needed in order to understand the fundamentals behind surface reactions of catalysts for future energies. Using planewave density functional theory (DFT) calculations, the adsorption of ethanol on perfect and O-defected TiO(2) rutile (110) surfaces was examined. On both surfaces the dissociative adsorption mode on five-fold coordinated Ti cations (Ti(4+)(5c)) was found to be more favourable than the molecular adsorption mode. On the stoichiometric surface E(ads) was found to be equal to 0.85 eV for the ethoxide mode and equal to 0.76 eV for the molecular mode. These energies slightly increased when adsorption occurred on the Ti(4+)(5c) closest to the O-defected site. However, both considerably increased when adsorption occurred at the removed bridging surface O; interacting with Ti(3+) cations. In this case the dissociative adsorption becomes strongly favoured (E(ads) = 1.28 eV for molecular adsorption and 2.27 eV for dissociative adsorption). Geometry and electronic structures of adsorbed ethanol were analysed in detail on the stoichiometric surface. Ethanol does not undergo major changes in its structure upon adsorption with its C-O bond rotating nearly freely on the surface. Bonding to surface Ti atoms is a σ type transfer from the O2p of the ethanol-ethoxide species. Both ethanol and ethoxide present potential hole traps on O lone pairs. Charge density and work function analyses also suggest charge transfer from the adsorbate to the surface, in which the dissociative adsorptions show a larger charge transfer than the molecular adsorption mode.  相似文献   

9.
The adsorption of oxygen atoms O(3P) on both ideal and hydrated rutile TiO(2)(110) surfaces is investigated by periodic density functional theory (DFT) calculations within the revised Perdew-Burke-Ernzerhof (RPBE) generalized gradient approximation and a four Ti-layer slab, with (2 x 1) and (3 x 1) surface unit cells. It is shown that upon adsorption on the TiO(2) surface the spin of the O atom is completely lost, leading to stable surface peroxide species on both in-plane and bridging oxygen sites with O-binding energies of about 1.0-1.5 eV, rather than to the kinetically unstable terminal Ti-O and terminal O-O species with smaller binding energies of 0.1-0.7 eV. Changes in O-atom coverage ratios between 1/3 and 1 molecular layer (ML) and coadsorption of H(2)O have only minor effects on the O-binding energies of the stable peroxide configurations. High O-atom diffusion barriers of about 1 eV are found, suggesting a slow recombination rate of adsorbed O atoms on TiO(2)(110). Our results suggest that the TiOOTi peroxide intermediate experimentally observed in photoelectrolysis of water should be interpreted as a single spinless O adatom on TiO(2) surface rather than as two Ti-O* radicals coupled together.  相似文献   

10.
The interaction of NO with TiO2 (110)-(1 x 2) surface has been studied by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, Auger electron spectroscopy, and low-energy electron diffraction, with the aim to clarify the role of ordered defects in NO reactivity toward TiO2. The interaction was studied for exposures up to 2000 L. However, the main effects occur already in the first 2 L. The exposure of the surfaces to NO resulted in the healing of defect sites without adsorption of N and low-energy electron diffraction shows that the surface (1 x 2) symmetry is not lost after the NO dose.  相似文献   

11.
Synchrotron-based high-resolution photoemission, X-ray absorption near-edge spectroscopy, and first-principles density functional (DF) slab calculations were used to study the interaction of NO(2) with a TiO(2)(110) single crystal and powders of titania. The main product of the adsorption of NO(2) on TiO(2)(110) is surface nitrate with a small amount of chemisorbed NO(2). A similar result is obtained after the reaction of NO(2) with polycrystalline powders of TiO(2) or other oxide powders. This trend, however, does not imply that the metal centers of the oxides are unreactive toward NO(2). An unexpected mechanism is seen for the formation of NO(3). Photoemission data and DF calculations indicate that the surface nitrate forms through the disproportionation of NO(2) on Ti sites (2NO(2,ads) --> NO(3,ads) + NO(gas)) rather than direct adsorption of NO(2) on O centers of titania. Complex interactions take place between NO(2) and O vacancies of TiO(2)(110). Electronic states associated with O vacancies play a predominant role in the bonding and surface chemistry of NO(2). The adsorbed NO(2), on its part, affects the thermochemical stability of O vacancies, facilitating their migration from the bulk to the surface of titania. The behavior of the NO(2)/titania system illustrates the importance of surface and subsurface defects when using an oxide for trapping or destroying NO(x)() species in the prevention of environmental pollution (DeNOx operations).  相似文献   

12.
Density functional calculations are performed to study the H-atom diffusion on titanium dioxide (110) surface in the cases of water-molecule dissociation and splitting of the adjacent hydroxyl OH pair. It is shown that, when a water molecule is adsorbed at a surface oxygen-vacancy site, a fragment H atom of the water molecule tends to diffuse toward the nearest-neighboring bridging-oxygen sites by using a straight-line or relay-point path. As the result, a pair of surface hydroxyl OH is formed on the same oxygen row. In a thermal process, on the other hand, such OH pair favorably splits only by using a relay-point path, i.e., by transferring one H atom from a bridging-oxygen site to a next-neighboring one along the same oxygen row by way of another in-plane oxygen site. We found that the latter splitting reaction is activated around room temperature.  相似文献   

13.
热致变色化合物TiO[VO(SO4}2(H2O)3].2H2O的合成...   总被引:1,自引:0,他引:1  
  相似文献   

14.
Synchrotron-based high-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of gold with titania and the chemistry of SO(2) on Au/TiO(2)(110) surfaces. The deposition of Au nanoparticles on TiO(2)(110) produces a system with an extraordinary ability to adsorb and dissociate SO(2). In this respect, Au/TiO(2) is much more chemically active than metallic gold or stoichiometric titania. On Au(111) and rough polycrystalline surfaces of gold, SO(2) bonds weakly and desorbs intact at temperatures below 200 K. For the adsorption of SO(2) on TiO(2)(110) at 300 K, SO(4) is the only product (SO(2) + O(oxide) --> SO(4,ads)). In contrast, Au/TiO(2)(110) surfaces (theta;(Au) < or = 0.5 ML) fully dissociate the SO(2) molecule under identical reaction conditions. Interactions with titania electronically perturb gold, making it more chemically active. Furthermore, our experimental and theoretical results show quite clearly that not only gold is perturbed when gold and titania interact. The adsorbed gold, on its part, enhances the reactivity of titania by facilitating the migration of O vacancies from the bulk to the surface of the oxide. In general, the complex coupling of these phenomena must be taken into consideration when trying to explain the unusual chemical and catalytic activity of Au/TiO(2). In many situations, the oxide support can be much more than a simple spectator.  相似文献   

15.
为了提高MNOx/TiO2催化剂催化氧化NO的活性,在载体TiO2上负载醋酸锰的同时掺杂了一定量的硝酸铈,构成了Ce(1)Mn(3)Ti催化剂,并对催化剂进行XRD、BET和XPS等表征。重点考察了H2O和SO2对催化剂活性的影响,通过FT-IR、SEM和BET等表征手段对毒化前后的催化剂组成及结构进行了分析。结果表明,Ce(1)Mn(3)Ti催化剂具有较好的活性,在空速41 000 h-1、NO体积分数为300×10-6及O2含量10%的条件下,反应温度200℃时NO转化率可达58%,250℃时NO转化率达到最高值85%。单独加入4%H2O使得催化剂活性降低,升高反应温度,H2O对催化剂的影响减弱;同时通入4%H2O和100×10-6SO2,在反应温度250℃时,NO转化率下降并维持在48%左右,停止通入后恢复到61%。H2O和SO2使催化剂活性物种硫酸盐化失活。  相似文献   

16.
We have carried out a systematic study of N(2)O dissociation on a TiO(2) (110) surface by means of plane-wave pseudopotential density-functional theory calculations. We have made use of both static and dynamic calculations in order to elucidate N(2)O decomposition mechanisms. We find that dissociation is not favorable on the stoichiometric surface. On the other hand, the presence of oxygen bridging vacancies make the N(2)O decomposition possible. The role of the defective surface is to provide electrons to the adsorbed molecule. We find two channels for decomposition, depending on whether the molecule is adsorbed with the O or the N end of the molecule on a vacancy. The first case is energetically downhill and proceeds spontaneously, leading to N(2) ejection from the surface and vacancy oxidation. The second case relies on the formation of an intermediate bridging configuration of the adsorbed molecule and is hindered by a small energy barrier. In this case, molecule breaking produces N(2) in the gas phase and leaves oxygen adatoms on the surface. We relate our results to recent experimental findings.  相似文献   

17.
应用金属氧化物簇模型的选取原则和密度泛函方法,对一系列嵌入族模型金红石型(TiO2)n(n=2~15)的表面体系进行了研究,计算结果表明,合理选取的嵌入簇模型可以得到与实验一致的固体表面电子结构,通过描述表面的性质能够给出表面金属吸附的电子行为的定性解释,进一步证实了该模型的密度泛函研究能够用于固体金属氧化物的簇-表面类比.揭示了选择合理的簇模型是保证族表面类比方法成功的主要因素.  相似文献   

18.
Minimizing the energy of an $N$ -electron system as a functional of a two-electron reduced density matrix (2-RDM), constrained by necessary $N$ -representability conditions (conditions for the 2-RDM to represent an ensemble $N$ -electron quantum system), yields a rigorous lower bound to the ground-state energy in contrast to variational wave function methods. We characterize the performance of two sets of approximate constraints, (2,2)-positivity (DQG) and approximate (2,3)-positivity (DQGT) conditions, at capturing correlation in one-dimensional and quasi-one-dimensional (ladder) Hubbard models. We find that, while both the DQG and DQGT conditions capture both the weak and strong correlation limits, the more stringent DQGT conditions improve the ground-state energies, the natural occupation numbers, the pair correlation function, the effective hopping, and the connected (cumulant) part of the 2-RDM. We observe that the DQGT conditions are effective at capturing strong electron correlation effects in both one- and quasi-one-dimensional lattices for both half filling and less-than-half filling.  相似文献   

19.
20.
The thermal decomposition of dimethyl methylphosphonate (DMMP), which is a simulant molecule for organophosphorus nerve agents, has been investigated on Cu clusters as well as on Cu films deposited on a TiO(2)(110) surface. Scanning tunneling microscopy studies were conducted to characterize the cluster sizes and surface morphologies of the deposited Cu clusters and films. Temperature-programmed desorption experiments demonstrated that the surface chemistry of DMMP is not sensitive to the size of the Cu clusters over the range studied in this work. DMMP reaction on an annealed 40 monolayer Cu film resulted in the desorption of H(2), methane, methyl, formaldehyde, methanol, and molecular DMMP, and reaction on the small (4.4 +/- 0.9 nm diameter, 1.8 +/- 0.6 nm height) and large (10.7 +/- 1.9 nm diameter, 4.8 +/- 1.0 nm height) Cu clusters generated similar products. Formaldehyde and methane production is believed to occur via a methoxy intermediate on the Cu surface. These products are favored on the higher coverage Cu films that completely cover the TiO(2) surface since competing reaction pathways on TiO(2) are suppressed. X-ray photoelectron spectroscopy studies showed that DMMP begins to decompose on the Cu clusters upon adsorption at room temperature and that atomic carbon, atomic phosphorus, and PO(x) remain on the surface after DMMP decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号