首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Au-assisted electroless etching of p-type silicon substrate in HF/H2O2 solution at 50 °C was investigated. The dependence of the crystallographic orientation, the concentration of etching solution and the silicon resistivity on morphology of etched layer was studied. The layers formed on silicon were investigated by scanning electron microscopy (SEM). It was demonstrated that although the deposited Au on silicon is a continuous film, it can produce a layer of silicon nanowires or macropores depending on the used solution concentration.  相似文献   

2.
The zircon mineral is widely studied in geochronology. In the case of the fission track method (FTM), the age is determined by the density of fission tracks at the zircon surface, which can be observed with an optical microscope after an appropriate chemical treatment (etching). The etching must be isotropic at the zircon grain surface to be used in the FTM, which leads those zircon grains whose etching is anisotropic to be discarded. The only reason for this discarding is the nonuniform morphology of the surface grain seen by optical microscopy, that is, no further physicochemical analysis is performed. In this work, combining micro‐Raman and scanning electron microscopy (SEM) to study the etching anisotropy, it was shown that zircon grains that present at least one area at the surface where the density of fission track is uniform can be used in the FTM. The micro‐Raman showed characteristic spectra of the standard zircon sample either from the areas where there are tracks or from where there are not. The only difference found was in the Raman bandwidths, which were broader for the areas with higher density of fission tracks. This suggests simply a decrease in the relative percentage of the crystalline/amorphous phases at these areas. The SEM/energy dispersive spectrometry (EDX) showed that there were no significant differences in the principal chemical composition at the areas with and without fission tracks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
用一种低成本的方法制备出了树形结构Si/ZnO纳米线阵列。首先在室温条件下用金属辅助化学腐蚀法在Si(100)衬底上制备了Si纳米线阵列,Si纳米线的直径尺寸及分布都很均匀,通过改变腐蚀时间,能够得到高度不同的Si纳米线阵列。利用磁控溅射在Si纳米线表面制备一层ZnO薄膜,然后利用水热法在Si纳米线阵列上生长了ZnO纳米线。通过扫描电子显微镜(SEM)、能谱分析仪(EDS)和光致发光(PL)测试对样品进行了表征。通过这种方法制备的Si/ZnO复合结构在太阳能电池、光催化等领域有潜在应用价值。  相似文献   

4.
Fiber optic reflectometry (FOR) and scanning electron microscopy (SEM) were used to study the regularities of the etching of a single-mode optical silica fiber with a germanium silicate core in subcritical and supercritical water. It was demonstrated that the rate of etching of the germanium silicate core, being higher than that of etching of the silica cladding, was responsible for the formation of a well at the fiber end face, the depth of which increased with the time of etching. The temporal behavior of the FOR signal was of oscillatory character, an observation that accounted for the interference effects that accompany the reflection of radiation (from the photodiode used in the FOR) from the fiber end face during its etching (well deepening). The interference-controlled character of the FOR signal made it possible to directly measure the rate of etching of the fiber end face in water in its different phase states (gaseous, liquid, and supercritical) at various temperatures and pressures. The lowest measured rate of etching of the germanium silicate core (at 200°C and 54 atm) was 10−3 nm/s, whereas the highest measured rate was 30 nm/s (at 400°C and 246 atm). The temperature dependence of the etching rate was demonstrated to obey the Arrhenius law, with an activation energy of 58 ± 3 kJ/mol. At later stages of etching, the FOR signal changed from regular oscillatory to irregular noisy due to the formation defects of various sizes, as could be clearly seen in SEM images.  相似文献   

5.
Electron-assisted chemical etching of oxidized chromium, CrOx, has been studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). Two model substrates were used—10 nm CrOx deposited on Si(1 0 0) that was covered with either native oxide or a 20 nm Au/Pd alloy film. Using chlorine and/or oxygen as etching gases, the experiments were conducted in a customized high vacuum system, equipped with a high density electron source and a low pressure reaction cell. On both substrates, electron-assisted chemical etching of CiOx was detected by SEM, EDS and AFM. Making the method questionable for etching applications, there is substantial substrate damage associated with the etching. The SEM images indicate strongly inhomogeneous material removal, apparently initiated and propagated from specific but unidentified sites. In the experiments involving the Au/Pd film, there was phase separation of Au and Pd, and dewetting to form metallic islands. AFM data show that the etched holes were as deep as 200 nm, confirming relatively rapid etching of the Si substrate after the top layer of Cr oxide was removed.  相似文献   

6.
Self-organized nanopores and nanotubes have been produced in thin films of titanium (Ti) prepared using filtered cathodic vacuum arc (FCVA), DC- and RF-sputter deposition systems. The anodization process was performed using a neutral electrolyte containing fluoride ions with an applied potential between 2 and 20 V (for clarity the results are only presented for 5 V). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques were used to characterise the films. It was found that the crystallographic orientation of the Ti films played a significant role in determining whether pores or tubes were formed during the anodic etching process.  相似文献   

7.
采用同步辐射光电子能谱(SRPES)结合扫描电子显微镜(SEM)和称量法,研究了中性(NH4)2S溶液钝化GaAs(100)表面,并与常规(NH4)2S碱性溶液钝化方法进行了比较- SRPES结果表明该处理方法可以产生较厚的Ga硫化物层和较强的Ga—S键,Ga的硫化物有好的稳定性-称量法表明该方法有更低的腐蚀速率-SEM结果表明该方法钝化处理的GaAs表面所产生的腐蚀坑数目少,直径小- 关键词:  相似文献   

8.
Surface plasma treatment in a reactive ion etching system is used to observe a considerable decrease in permeability of polyethylene terephthalate to gases. The effects of oxygen plasma on the surface properties and morphology of PET polymers are investigated by scanning electron microscopy (SEM), x-ray photo-electron spectroscopy (XPS) and atomic force microscopy (AFM). In addition, the optical transmission properties of the treated samples have been investigated corroborating the findings of SEM and AFM analyses. Moreover, the penetration of air through the treated substrates was investigated using a vacuum test. The treated PET substrates can be used to realize flexible plasma display panels.  相似文献   

9.
The dentin quality of primary and permanent teeth was inspected by Fourier transformed Raman spectroscopy (FT-Raman); scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and hardness test. Middle dentin of crowns were reached by carbide bur abrading providing a uniform smear layer. Phosphoric acid was applied in order to simulate the etching of total etching adhesive systems. The groups were (n = 10): G1 (primary dentin smear layer); G2 (35% phosphoric acid etched primary dentin); G3 (permanent dentin smear layer); G4 (35% phosphoric acid etched permanent dentin). FT-Raman results were subjected to cluster analysis. SEM/EDS were made in order to add the data obtained by FT-Raman. The hardness data were subjected to ANOVA and Tukey test. FT-Raman showed differences among groups, either to organic or inorganic content. For the organic content, primary and permanent dentin became similar after the etching; conversely, the inorganic content showed differences for the two substrates. Hardness test showed no significant differences between primary and permanent dentin, before or after etching, but the etching decreased these values. The mineral content arrangement of primary dentin is different from permanent dentin, independently of the etching. The substrate type did no influence the hardness, but the etching decreased it.  相似文献   

10.
Poly(ether ether ketone)/carbon fiber composites (PEEK/Cf) were chemical etched by Cr2O3/H2SO4 solution, electroless plated with copper and then electroplated with nickel. The effects of chemical etching time and temperature on the adhesive strength between PEEK/Cf and Cu/Ni layers were studied by thermal shock method. The electrical resistance of some samples was measured. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface composition and functional groups. Scanning electron microscopy (SEM) was performed to observe the surface morphology of the composite, the chemical etched sample, the plated sample and the peeled metal layer. The results indicated that CO bond increased after chemical etching. With the increasing of etching temperature and time, more and more cracks and partially exposed carbon fibers appeared at the surface of PEEK/Cf composites, and the adhesive strength increased consequently. When the composites were etched at 60 °C for 25 min and at 70-80 °C for more than 15 min, the Cu/Ni metallization layer could withstand four thermal shock cycles without bubbling, and the electrical resistivity of the metal layer of these samples increased with the increasing of etching temperature and time.  相似文献   

11.
超声波辅助酸蚀提高熔石英损伤阈值   总被引:1,自引:0,他引:1       下载免费PDF全文
为了提高熔石英元件表面抗激光损伤阈值,利用超声波辅助HF酸研究平滑光学元件表面缺陷形貌和去除刻蚀后残留物效果,通过扫描电子显微镜电镜和原子力显微镜记录表面形貌结构,以及单脉冲激光辐照测试抗损伤阈值确定实验参数。研究表明,超声波场的引入能催化HF酸的刻蚀速率、提高钝化效果并且更易剥离嵌入的亚μm级杂质粒子。经过实验测试,获得了熔石英类元件相匹配的超声辅助HF酸刻蚀实验参数,研究结果对应用超声波辅助HF酸研究熔石英表面抗激光损伤有重要意义。  相似文献   

12.
Electrochemical etching of amorphous SiC in fluoride solution was studied. Anodic dissolution and passivation are observed for p-type electrodes under dark illumination. The dissolution of p-type a-Si1−xCx is found to be under mixed transport/kinetic control; the diffusion current is of first order in fluoride concentration. Porous etching was not observed in this case. The surface finish of 6H-SiC depends on the experimental conditions; both uniform and porous etching is observed. In this paper, we report the formation of porous p-type amorphous SiC (a-Si1−xCx) films, elaborated previously by DC magnetron sputtering and analyze the porous layers (PSC) using scanning electron microscopy, spectrophotometer and photoluminescence. The crystal structures and the preparation conditions of porous SiC are shown to have an effect on the structural and electrical properties of the material obtained. SEM observation indicates that the porous a-Si1−xCx layers have shown some specific feature; a semi-cylindrical structure of the porous network has been observed.  相似文献   

13.
In this work, an experimental study on the chemical etching reaction of polycrystalline p-type 6H-SiC was carried out in HF/Na2O2 solutions. The morphology of the etched surface was examined with varying Na2O2 concentration, etching time, agitation speed and temperature. The surfaces of the etched samples were analyzed using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) Fourier transform infrared spectroscopy (FT-IR) and photoluminescence. The surface morphology of samples etched in HF/Na2O2 is shown to depend on the solution composition and bath temperature. The investigation of the HF/Na2O2 solutions on 6H-SiC surface shows that as Na2O2 concentration increases, the etch rate increases to reach a maximum value at about 0.5 M and then decreases. A similar behaviour has been observed when temperature of the solution is increased. The maximum etch rate is found for 80 °C. In addition, a new polishing etching solution of 6H-SiC has been developed. This result is very interesting since to date no chemical polishing solution has been developed on the material.  相似文献   

14.
We characterized the surface defects in a-plane GaN, grown onto r-plane sapphire using a defect-selective etching (DSE) method. The surface morphology of etching pits in a-plane GaN was investigated by using different combination ratios of H3PO4 and H2SO4 etching media. Different local etching rates between smooth and defect-related surfaces caused variation of the etch pits made by a 1:3 ratio of H3PO4/H2SO4 etching solution. Analysis results of surface morphology and composition after etching by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) demonstrated that wet chemical etching conditions could show the differences in surface morphology and chemical bonding on the a-plane GaN surface. The etch pits density (EPD) was determined as 3.1 × 108 cm−2 by atom force microscopy (AFM).  相似文献   

15.
采用感应耦合等离子体刻蚀技术,以CF4/Ar/O2为反应气体对熔石英元件表面进行修饰,研究并分析了CF4和Ar流量对刻蚀速率、熔石英表面粗糙度和微观形貌的影响。结果表明,CF4化学刻蚀与Ar的物理轰击对熔石英样品表面修饰效果存在一定竞争关系,当它们达到平衡时表面粗糙度最小。通过对不同流量气体刻蚀过后熔石英表面粗糙度和光学显微形貌分析获得了较为理想的气流量配比,该研究为反应等离子体修饰熔石英光学元件以获得较高光学性能提供工艺参考。  相似文献   

16.
Single-mode, highly directional and stable photoluminescence (PL) emission has been achieved from porous silicon microcavities (PSMs) fabricated by pulsed electrochemical etching. The full width at half maximum (FWHM) of the narrow PL peak available from a freshly etched PSM is about 9 nm. The emission concentrates in a cone of 10° around the normal of the sample, with a further reduced FWHM of ∼5.6 nm under angle-resolved measurements. Only the resonant peak is present in such angle-resolved PL spectra. No peak broadening is found upon exposure of the freshly prepared PSM to a He-Cd laser beam, and the peak becomes somewhat narrower (∼5.4 nm) after the PSM has been stored in an ambient environment for two weeks. At optimized etching parameters, even a 4-nm FWHM is achievable for the freshly etched PSM. In addition, scanning electron microscopy (SEM) plane-view images reveal that the single layer porous Si formed by pulsed current etching is more uniform and flatter than that formed by direct current (dc) etching, demonstrated by the well-distributed circular pores with small size in the former in comparison with the irregular interlinking pores in the latter. The SEM cross-section images show the existence of oriented Si columns of 10 nm diameter along the etching direction within the active layer, good reproducibility and flat interfaces. It is thus concluded that pulsed current etching is superior to dc etching in obtaining flat interfaces within the distributed Bragg reflectors because of its minor lateral etching. Received: 7 March 2001 / Accepted: 23 July 2001 / Published online: 30 October 2001  相似文献   

17.
In this paper we describe the formation of a luminescent (NH4)2SiF6 via porous silicon (PS) obtained from HNO3/HF vapour etching (VE) silicon (Si) substrates. It was found that at specific conditions, PS transforms in a luminescent thick white powder (WP) layer. Scanning electron microscopy (SEM) revealed that the WP has a coral-like structure. It was also found that PS persists as an intermediate layer between the Si substrate and the WP, and seems to be the seed that transforms into the WP. SEM microanalysis show that the WP is essentially composed of silicon (Si), nitrogen (N) and fluorine (F). Fourier transform infrared (FTIR) spectroscopy investigations show that this WP contains SiF62− and NH4+ ions and N---H chemical bonds. X-ray diffraction (XRD) patterns of the WP confirm that a (NH4)2SiF6 cubic phase is concerned. SEM microanalyses show an excess of Si in the WP matrix. FTIR spectroscopy and XRD analysis reveal the presence of crystalline Si particles and SiOx, both originating from the excess of Si. The (NH4)2SiF6 WP phase emits an intense photoluminescence (PL) band, shifted towards higher energies as compared to the starting PS layer. The possible origin and mechanism of the luminescence emission was discussed taking into account the ability of small SiOx-surrounded Si particles to emit PL at rather high energy. The wide range variation of the thickness of the (NH4)2SiF6 WP may be easily used for the grooving of Si wafers.  相似文献   

18.
Bimetallic SCN ligand based single crystals of manganese mercury thiocyanate (MMTC), cadmium mercury thiocyanate (CMTC) and zinc cadmium thiocyanate (ZCTC) are grown by slow solvent evaporation technique. The growth mechanism and surface features are investigated by optical microscopic techniques such as scanning electron microscopy (SEM) and atomic force microscopy (AFM). The laser induced surface damage measurements were carried out using a Q-switched Nd:YAG laser at 1064 nm with laser beam of 1.0 Hz and pulse duration 25 ps. The laser damage threshold values of MMTC, CMTC and ZCTC are found to be 15.9, 22.9 and 19.7 GW/cm2, respectively. The SEM analysis of MMTC reveals the formation of elongated dendrite growth pattern caused by the fluctuations of Mn and Hg metal ligands when thiocyanate (SCN) bridges them. The etching study indicates the occurrence of different types of etch pit patterns like terraced triangles, pillars, pyramids and rods. The AFM images confirm the formation of three major hillocks with cavities in MMTC. The measured roughness values for CMTC crystal are very much lower than that of MMTC.  相似文献   

19.
Polyamide 6 (PA 6) films are treated with helium(He)/CF4 plasma at atmospheric pressure. The samples are treated at different treatment times. The surface modification of the PA 6 films is evaluated by water contact angle, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The etching rate is used to study the etching effect of He/CF4 plasma on the PA 6 films. The T-peel strengths of the control and plasma treated films are measured to show the surface adhesion properties of the films. As the treatment time increases, the etching rate decreases steadily, the contact angle decreases initially and then increases, while the T-peel strength increases first and then decreases. AFM analyses show that the surface roughness increases after the plasma treatment. XPS analyses reveal substantial incorporation of fluorine and/or oxygen atoms to the polymer chains on the film surfaces.  相似文献   

20.
Multilayered Co/Pd nano-dot arrays with pitches varying from 100 to 25 nm were obtained using an electron beam lithography and plasma etching process. The proximity effect in the lithography step and redeposition phenomenon in the etching step was minimized by modifying the resist development method and plasma etching parameters. For the array with a pitch of 100 nm, the ferromagnetic single domain behavior of each Co/Pd nano-dot was confirmed by magnetic force microscopy at room temperature. In addition, its magnetization, coercivity, and switching field distribution were also evaluated quantitatively using an alternating gradient magnetometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号