首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Capped nanoparticles of silver were synthesized via the solvated metal atom dispersion (SMAD) technique followed by a digestive ripening procedure producing gram quantities of monodisperse spherical nanoparticles. This shows for the first time that a digestive ripening protocol is possible for an element other than gold. The particle size and optical spectra were found to be dependent on the capping agent used. Particles capped with dodecane thiol had a mean diameter of 6.6+/-1 nm, while trioctyl phosphine capped particles were 6.0+/-2 nm determined via TEM microscopy. These particles were found to organize into two- and three-dimensional superlattices with a well defined geometry through self-assembly in a liquid solution, that was dictated by the ligand used resulting in a triangular or circular lattice.  相似文献   

2.
We describe a remarkable and simple alloying procedure in which noble metal intermetallic nanoparticles are produced in gram quantities via digestive ripening. This process involves mixing of separately prepared colloids of pure Au and pure Ag or Cu particles and then heating in the presence of an alkanethiol under reflux. The result after 1 h is alloy nanoparticles. Particles synthesized according to this procedure were characterized by UV-vis spectroscopy, EDX analysis, and high-resolution electron microscopy, the results of which confirm the formation of alloy particles. The particles of 5.6+/-0.5 nm diameter for Au/Ag and 4.8+/-1.0 nm diameter for Cu/Au undergo facile self-assembly to form 3-D superlattice ordering. It appears that during this digestive ripening process, the organic ligands display an extraordinary chemistry in which atom transfer between atomically pure copper, silver, and gold metal nanoparticles yields monodisperse alloy nanoparticles.  相似文献   

3.
Here we report the synthesis of monodispersed indium nanoparticles by evaporation/condensation of indium shot using the solvated metal atom dispersion (SMAD) technique, followed by digestive ripening in low boiling point (BP 38 °C) methylene chloride and in a high boiling point (BP 110 °C) toluene solvent. The as-prepared SMAD indium nanoparticles are polydispersed with particle size ranging from 25 to 50 nm, but upon digestive ripening (heating of colloidal material at the boiling point of solvent in presence of excess surface active ligands) in methylene chloride, a remarkable reduction of particle size was achieved. In higher boiling solvent (toluene), where the indium nanoparticles at reflux temperature are probably melted, it does not allow the best result, and less monodispersity is achieved. We employed different surface active ligands (amine, phosphine, and mixed ligands) to passivate these indium nanoparticles. The temporal evolution of the surface plasmon of indium nanoparticles was monitored by in situ UV-vis spectroscopy, and particles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The merits of this synthesis procedure are the use of bulk indium as starting material, tuning the particle size in low boiling point solvent, particle size adjustment with the choice of ligand, and a possible scale up.  相似文献   

4.
We report a single step preparation of monodisperse fluorescent poly(methyl)methacrylate (PMMA) lattices cross-linked with ethylene glycol dimethacrylate with radii in the range 150-1000 nm using dispersion polymerization. The particles are applied as fluorescent cores in core-shell PMMA particles for confocal microscopy (Dullens et al. Langmuir 2003, 19, 5963). Contrary to un-cross-linked particles, these cross-linked colloids are stable in good solvents for PMMA as well. Therefore we studied the properties of the cross-linked PMMA particles in the good solvents tetrahydrofuran (THF), chloroform, and toluene using light scattering and confocal scanning laser microscopy. We show that the particles swell instantaneously and that their volume can increase up to more than seven times their volume in poor solvents. Further, it is very likely that the particles are charged in THF.  相似文献   

5.
Separation and Chemical Characterization of Wetting Crude Oil Compounds   总被引:1,自引:0,他引:1  
To improve the understanding of wettability, especially the influence of colloidal stability and composition of crude oil, wetting experiments on quartz sand were performed with an asphaltene-rich oil, a resin-rich oil, and with model oils containing different colloid compositions. A two-step procedure was developed to investigate the wetting behavior. In the first step those crude oil components were extracted, which preferentially wet solid surfaces. The extracted crude oil components were characterized in the second step. The amount of adsorbed oil components correlates with the stability of the crude oil colloids: low colloidal stability of crude oil leads to larger amounts of adsorbed components than does high colloidal stability. The addition of resins and/or low molecular weight asphaltenes to the crude oil stabilizes the crude oil colloids; i.e., a lower amount of wetting components are isolated by extraction in such systems. To find out, which fraction of the adsorbed oil components determines the wetting behavior of a crude oil, the wetting properties of the toluene solutions of these fractions were compared to those of the toluene solutions of the precipitated crude oil colloids. The fractions extracted with the solvent systems chloroform and methanol/chloroform showed nearly the same wetting behavior as the crude oil colloids. These fractions are characterized by the highest molecular weights, higher sulfur compositions, and the lowest H/C ratios. On the other hand, the nitrogen compounds predominate in the acetone fraction.  相似文献   

6.
Bismuth colloids and metal-metal oxide films have been prepared by the method Chemical Liquid Deposition (CLD). The metal is evaporated to yield atoms which are solvated at liquid nitrogen temperature, and upon warming stable liquid colloids, are formed with particle size ranging between 50–350 Å. Zeta potentials were calculated according to the convention of Hunter and the Hückel equation, for most of these negatively charged particles. Upon solvent removal, colloidal particles coalesce to form films, which contain some residual solvent. The synthesis of colloids and films from Bi with acetone, 2-butanone, 4-methyl-2-pentanone, ethanol, 2-propanol, DMF, THF, DMSO, benzene and toluene is reported. Transmission Electron Microscopy (TEM) allows us to determine particle size. FTIR, Thermogravimetric Analyses (TGA) and Scanning Electron Microscopy (SEM) have aided in film characterization. These studies indicate that solvents are incorporated into the films. Resistivity studies showed that they behave as semiconductors rather than pure metals. TGA studies reveal that loss of weight occurs within 244–453°C. The films are very stable with 5–30% weight loss at 550°C.  相似文献   

7.
We report a facile chemical route for the synthesis of monodisperse nanocrystals of various metal sulfides (PbS, Cu(2)S, and Ag(2)S) and their assemblies into nanocrystal superlattices (NCSs); the sulfides NCSs were precipitated by adding ethanol to nanocrystal colloids, which were obtained directly by a reaction between metal thiolate and thioacetamide in a pure dodecanethiol solvent.  相似文献   

8.
The preparation of monodisperse, ultrafine polymermodified colloidal silica, 11 or 42 nm in diameter, were studied. The reaction of the colloidal silica with polymeric silane coupler in 1,2-dimethoxyethane and removal of the unreacted polymer with granular silica gel (10–20 mesh) in acetone gave a suspension of monodisperse composite particles.  相似文献   

9.
Gold colloids of well-defined shape, size and polydispersity are synthesized by heterogeneous reduction of gold salts in amphiphilic block-copolymer micelles. The resulting hybride systems consisting of the noble metal colloid and the stabilizing shell of block-copolymers are characterized by electron microscopy and small-angle x-ray scattering. Opposite to classical noble metal colloids, the block-copolymer stabilized systems exhibit an extra-ordinary high colloidal stability which makes analysis and sample handling very simple.It turned out that non-spherical metal colloids are formed in the early stages of the reduction process where the amount of gold exceeds the reduction agent. At later stages, the colloids break up to globular subunits again. The reaction period of colloidal anisometry is reflected in a violet color of the reaction solution, which is caused by a typical structured, double-resonance plasmon band.Small-and wide-angle x-ray scattering reveal a quantitative measure for the size, shape, anisometry and local order in each step of the reduction process. It is suggested that the primary aubergine-shaped particles consist of globular primary particles which are glued together via non reacted gold salt. This observation gives rise to some interesting possibilities of the supramolecular handling of colloids.  相似文献   

10.
We have developed a rapid and simple method for the preparation of nearly mono-dispersed gold colloids with a fairly high concentration above 10 mM using hydroxylamine as the reducing agents, in the presence of α-methoxy-ω-mercaptoethyl-poly(ethylene glycol)(MeO-PEG-SH). It was found that a hydroxylamine acted not only as a reducing agent, but also as a nucleation agent under alkaline reaction conditions. Though the colloid concentration was fairly high, the dispersion stability was remarkably improved even in a high ionic strength in the range greater than 1 M NaCl, in which conventional citrate gold colloids immediately flocculate and precipitate. The obtained colloid was successfully re-dispersed in aqueous media after lyophilization. In addition, the prepared gold colloid reduced a protein adsorption significantly on its surface. Concerning these results, the obtained colloidal dispersion may be suitable for biological applications, since a regionally concentrated colloidal dispersion with dispersion stability is required for bio-labeling and bio-imaging systems.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

11.
The ultrafast dynamics of photoinduced electrons in several metal and semiconductor colloidal nanoparticle systems are characterized using femtosecond laser spectroscopy. Various preparation methods are used and, in several cases, modified for making particles with long-term stability and narrow and controllable size distributions. The particle size and size distribution are determined using transmission electron microscopy and electronic absorption spectroscopy. For aqueous gold and silver colloids, spatial size confinement is found to cause substantially slower electronic relaxation due to reduction of non-equilibrium electron transport and weaker electron-phonon coupling. In gold colloids, photoejection of electrons into the liquid is observed, which is attributed to a two-photon enhanced ionization process. The effect of surfactant on the electron dynamics in CdS colloids is examined and found to be significant, substantiating the notion that electrons are dominantly trapped at the liquid-solid interface. In Ru3+-doped TiO2 colloids, the electronic decay is found to be as fast as or even faster than in undoped TiO2 and other semiconductor colloids such as CdS, suggesting that ion doping of large bandgap semiconductor colloids is not necessarily effective in lengthening the electron lifetime. In almost all cases studied, the majority of the photoinduced electrons are found to decay within a few tens of picoseconds due to non-radiative relaxation. The results are discussed in the context of the potential applications of metal and semiconductor nano-particles in areas including photocatalysis and photoelectrochemistry.  相似文献   

12.
Colloids and thin metal-metal oxide films have been prepared by a method we call Chemical Liquid Deposition (CLD). The metal is evaporated to yield atoms which are solvated at liquid nitrogen temperature, and upon warming stable liquid colloidal solutions are formed. In the case of tin, the particle size of these colloids ranges between 200–500 Å. Zeta potentials were calculated by a Hückel approximation for most of these negatively charged particles. Upon solvent removal, colloidal particles coalesce to form films, which contain some residual solvent. The synthesis of colloids and films from Sn with acetone, 2-butanone, THF, ethanol, 2-propanol, DMF and DMSO is reported. FTIR, High Resolution Mass Spectrometry, Thermogravimetric Analyses (TGA) and Scanning Electron Microscopy (SEM) film characterization has been carried out. These studies indicate that solvents are incorporated into the films. The resistivity studies showed that they more behave as semiconductors than pure metals. TGA studies reveal that loss of weight occurs within 200–500°C. The films are very stable with 5–10% weight loss at 550°C. SEM reveals their surface morphology. Mössbauer gives information about oxidation states of some tin films.  相似文献   

13.
Stable suspensions of size-uniform spherical assemblies of 5-8 nm gold colloids in toluene are readily obtained by cross linking the colloidal particles using alkanedithiols within a defined range of gold-dithiol molar ratios. The assemblies are very stable and remain suspended in toluene for several months without significant aggregation. These porous gold spheres can be further organized into hierarchically assembled relatively linear chains by the addition of ethanol.  相似文献   

14.
Cvak B  Pum D  Molinelli A  Krska R 《The Analyst》2012,137(8):1882-1887
Based on well established citrate reduction protocols for the synthesis of colloidal gold particles, this work focuses on the characterization of these colloids for further use as color labels in lateral flow devices. A reproducible production method has been developed for the synthesis of well characterized colloidal gold particles to be employed in Lateral Flow Devices (LFDs). It has been demonstrated that when undertaking chemical reduction of gold salts with sodium citrate, the amount of reducing agent employed could be used to directly control the size of the resultant particles. A protocol was thereby developed for the synthesis of colloidal gold particles of pre-defined diameters in the range of 15 to 60 nm and of consistent size distribution. The absorption maxima (λ(max)) of the reaction solutions were analyzed by UV/VIS measurements to determine approximate particle sizes, which were confirmed with transmission electron microscopy (TEM) measurements. Colloidal gold particles of about 40 nm in diameter were synthesized and used for labeling monoclonal anti-mycotoxin antibodies (e.g. zearalenone). To deduce the extent of antibody coupling to these particles, smaller colloids with 15 nm diameter were labeled with anti-species specific antibodies. Both solutions were mixed and then scanned by TEM to obtain information about the success of coupling.  相似文献   

15.
单分散TiO2亚微米球的制备与表征   总被引:1,自引:0,他引:1  
采用乙腈与乙醇混合溶剂体系制备出了单分散的亚微米级TiO2球形胶体颗粒, 并对乙腈相对含量以及实验温度等参数的影响进行了研究. 结果表明5 ℃下乙腈相对含量为70%时可制得高质量的单分散胶体颗粒. 通过TEM、SEM、粒度分析等表征手段, 表明所得胶体颗粒平均直径约为540 nm, 标准偏差在5%以内, 颗粒的多分布系数为0.013, TG-DSC分析表明胶体颗粒为含水量很少的水合TiO2; XRD分析表明单分散TiO2胶体颗粒在600 ℃高温烧结由无定型转变为锐钛矿型, 在900 ℃高温烧结则开始出现金红石型.  相似文献   

16.
We report a new class of derivatized 4,4'-bipyridinium ligands for use in synthesizing highly fluorescent, extremely stable, water-soluble CdSe and CdTe quantum dots (QDs) for bioconjugation. We employed an evaporation-condensation technique, also known as solvated metal atom dispersion (SMAD), followed by a digestive ripening procedure. This method has been used to synthesize both metal nanoparticles and semiconductors in the gram scale with several stabilizing ligands in various solvents. The SMAD technique comprised evaporation condensation and stabilization of CdSe or CdTe in tetrahydrofuran. The as-prepared product was then digestively ripened in both water and dimethyl formamide, leading to narrowing of the particle size distributions. The ligands were synthesized by nucleophilic substitution (S(N)2) reactions using 4,4'-bipyridine as a nucleophile. Confocal microscopy images revealed the orange color of the nanocrystalline QDs with diameters of ~5 nm. The size has been confirmed by using transmission electron microscopy. As a part of our strategy, 85% of the 4,4'-bipyridinium salt was synthesized as propionic acid derivative and used to both stabilize the QDs in water and label basic amino acids and different biomarkers utilizing the carboxylic acid functional group. Fifteen percent of the 4,4'-bipyridinium salt was synthesized as N-propyl maleimide and used as a second ligand to label any protein containing the amino acid cysteine by means of a 1,4-Michael addition.  相似文献   

17.
Copper nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. Oxidation of the SMAD prepared copper colloids resulted in Cu@Cu(2)O core shell structures (7.7 +/- 1.8 nm) or Cu(2)O nanoparticles depending on the reaction conditions. The nano Cu, Cu@Cu(2)O core shell, and Cu(2)O particles were found to be catalytically active for the generation of hydrogen from ammonia-borane either via hydrolysis or methanolysis reaction.  相似文献   

18.
胶体晶体自组装排列进展   总被引:10,自引:0,他引:10  
丁敬  高继宁  唐芳琼 《化学进展》2004,16(3):321-326
自组装排列胶体晶体是发展光子晶体等亚微米周期有序结构及新型光电子器件十分重要的环节.高电荷密度单分散胶体球在较弱的离子强度和稀浓度下会自发排列形成紧密堆积的周期性结构(ccp),常常是面心立方(fcc),科学家们以此为基础发展了多种结晶化胶体粒子的方法,包括重力场沉积、电泳沉积、胶体外延技术、垂直沉积、流通池、物理束缚排列及其他的许多方法.目前排列的胶体粒子基本为球形,材料也多为SiO2、PS、PMMA,此外一些复合粒子,主要为核壳粒子的排列这里也稍作介绍,这些方法及其变通的使用可以形成类蛋白石及反蛋白石结构,最终实现光子带隙及其它多种用途。  相似文献   

19.
We have developed a series of emulsion polymerization recipes for the synthesis of highly charged, monodisperse polystyrene colloids of diameters between 100-400 nm. These spherical colloidal particles were crosslinked with divinyl benzene and functionalized with 1-allyloxy-2-hydroxypropane sulfonate. These highly charged, monodisperse colloidal particles readily self-assemble into robust three-dimensionally ordered crystalline colloidal arrays (CCAs). These CCAs operate as photonic crystals that Bragg diffract light in the ultraviolet, visible, and infrared regions of the spectrum. Copyright 2000 Academic Press.  相似文献   

20.
We review recent developments in the synthesis and self-assembly of Janus and multiblock colloidal particles, highlighting new opportunities for colloid science and technology that are enabled by encoding orientational order between particles as they self-assemble. Emphasizing the concepts of molecular colloids and colloid valence unique to such colloids, we describe their rational self-assembly into colloidal clusters, taking monodisperse tetrahedra as an example. We also introduce a simple method to lock clusters into permanent shapes. Extending this to 2D lattices, we also review recent progress in assembling new open colloidal networks including the kagome lattice. In each application, areas of opportunity are emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号