首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular and crystal structures of 1-amino-3,5-diphenyl-2,4,4,6,6-pentacyano-cyclohex-1-ene (I) and 1-amino-3,5-diphenyl-2,4,4,6-tetracyanocyclohex-1-ene (II) are studied to examine intermolecular interactions. Crystal data for (I): space group P21, a=11.172(3), b=6.561(2), c=16.390(4) Å, β=100.25(2)0, V=1182.1 Å3, Z=2, R=0.046; for (II): space group P1, a=10.756(3), b=10.890(3), c=12.999(3) Å, α=62.20(2), β=70.73(2), γ=65.42(2)0, V=1207.2 Å3, Z=2, R=0.074. Intermolecular bonds via the aminonitrile fragment in (I) lead to formation of chains along they axis: N1…N6′ (1?x, ?1/2+y, 1?z) of 3.465(8) Å, N6…N1″ (1?x, 1/2+y, 1?z), and the contact with the solvent (acetone) O1…N1 of 2.984(7) Å. In compound (II), the intermolecular contacts N1…N5′ (?x+1, ?y, ?z+1) of 3.064(7) Å link the molecules into dimeric associates.  相似文献   

2.
The monomeric octa-aza bis-α-diimine macrocyclic complex [CoII(C10H20N8)(H2O)](ClO4)2 I, undergoes various reactions on the macrocyclic ligand. Reaction of complex I with triethylamine in double molar proportions, followed by slow aerial oxidation, produces a molecular dimeric complex [CoII(C10H14N8)]2, III, and a novel Co(I) complex [CoI(C10H19N8)], IV. Complex III is a staggered cofacial dimer with a cobalt-cobalt bond length 2.86(1) Å. The macrocyclic ligand of the complex contains an a-diimine function in each five-membered chelate ring, and a three-atom N-C-N? delocalized system in each six-membered chelate ring. Complex IV has the 5-5-6-6 chelate arrangement because one α-diimine moiety is rearranged to a syn-anti configuration. In the structure, the two fused six-membered chelate rings are fully conjugated and the two fused five-membered rings are saturated. However, when complex I reacts with excess triethylamine under the similar conditions, a dimeric complex of another type, [CoII(C10Hl6N8)]2, II, was generated, in which one N-N bond of the macrocyclic ligand is broken. Complex IV can be isolated also from the reaction of complex I with excess hydrazine, followed by slow aerial oxidation. When hydrazine in double molar proportions was used, complex [CoI(C10H17N8)(NHNH)] V, which contains a coordinated diazene ligand, was obtained. Only one six-membered chelate ring of complex V is deprotonated and oxidized to form a three-atom N-C-N? delocalized system. The structures of octa-aza complexes I-V are determined by X-ray crystallography: I, orthorhombic, C mca, a = 11.646(4), b = 17.049(3), c = 10.706(3) Å, Z = 4, R = 0.045, Rw = 0.047, based on 1024 reflections with I > 2σ(I); II, monoclinic, P 21/c, a = 9.814(3), b = 22.583(6). c = 14.632(9) Å, β = 98.90(5)°, Z = 4, R = 0.085, Rw = 0.101, based on 2033 reflections with I > 2σ(I); III, tetragonal, P 4/nmm, a = 15.614(3), c = 6.498(2) Å, Z = 4, R = 0.081, Rw = 0.115, based on 340 reflections with I > 2σ(I); IV, orthorhombic, P bca, a = 8.484(1), b = 16.662(3), c = 18.760(2) Å, Z = 8, R = 0.029, Rw = 0.024, based on 1441 reflections with I > 2σ(I); V, monoclinic, P 21/m, a = 7.892(3), b = 11.713(6), c = 9.326(4) Å, β = 108.03(3), Z = 2, R = 0.047, Rw = 0.056, based on 948 reflections with I > 2σ(I).  相似文献   

3.
Bis(1-aminoguanidinium) sulfate monohydrate (AG2SO4 … H2O, 1), bis(1,3-diamino-guanidinium sulfate (DAG2SO4, 2), bis(1,3,5-triaminoguanidinium) sulfate dihydrate (TAG2SO4 … 2 H2O, 3) and bis(azidoformamidinium) sulfate (AF2SO4, 5) were synthesized and characterized by multinuclear NMR, IR, and Raman spectroscopy and elemental analysis. In the synthesis of 3, double protonated triaminoguanidinium sulfate (HTAGSO4, 4) was obtained as a byproduct. The molecular structures of 15 in the crystalline state were determined by low-temperature single crystal X-ray diffraction. 1: orthorhombic, Pnma, a = 6.7222 (8) Å, b = 14.153 (2) Å, c = 11.637 (1) Å, V = 1107.1(2) Å3, Z = 4, ρcalc.= 1.586 g cm?3 R1 = 0.0442, wR2 = 0.1007 (all data). 2: hexagonal, P6122, a,b = 6.6907 (1) Å, c = 43.4600 (8) Å, γ= 120°, V = 1684.86 (5) Å3, Z = 6, ρcalc.= 1.634 g cm?3, R1 = 0.0321, wR2 = 0.0714 (all data). 3: monoclinic, C2/c, a = 9.6174 (8) Å, b = 22.858 (1) Å, c = 6.7746 (5) Å, β= 109.49 (1), V = 1404.0 (4) Å3, Z = 4, ρcalc.= 1.620 g cm?3, R1 = 0.0292, wR2 = 0.0781 (all data). 4: monoclini c, P21/c, a = 8.9998 (9), b = 6.3953 (6), c = 13.3148(12) Å, β= 99.679 (8), V = 755.44 (13) Å3, Z = 4, ρcalc.= 1.778 g cm?3, R1 = 0.0305, wR2 = 0.0809 (all data); 5: orthorhombic, Pbca, a = 11.3855 (9), b = 7.1032 (6), c = 12.807 (1) Å, V = 1035.74 (14) Å3, Z = 4, ρcalc.= 1.720 g cm?3, R1 = 0.0389, wR2 = 0.0862 (all data).  相似文献   

4.
Two crystal modifications, I and II, of the ZnPhen(S2CNEt2)2 complex have been isolated. According to XRD data, the single crystals of I are triclinic with a=9.745(2), b=10.252(2), c=14.331(3) Å, α=99.18(2), β=91.01(2), γ=113.28(2)°, V=1293.2(4) Å3, space group P1, Z=2, dcalc=1.401 g/cm3. The crystals of II are monoclinic with a=7.220(6), b=18.095(2), c=19.050(4) Å, β=95.85(2)°, V=2475.8(7) Å3, space group C2/c, Z=4, dcalc=1.461 g/cm3. In both modifications, the structure is formed by monomer molecules with a distorted octahedral environment of the zinc atom. All atoms in I are in the general position; in II, the atoms are linked by the twofold rotation axis. It is shown by X-ray phase analysis (XRPA) that the MnPhen(S2CNEt2)2 complexes (III) are isostructural to modification I of the ZnPhen(S2CNEt2)2 complex, which underlies the synthesis of a solid solution of these complexes, MnZn2Phen3(S2CNEt2)6 (phase IV). It is found that MPhen(S2CNEt2)2 (M=Zn2+, Mn2+) and phase IV quantitatively sublime when heated in vacuum. Thermolysis of III in argon yields manganese(II) sulfide of cubic modification; the main product of thermolysis of phase IV is a solid solution of ZnxMn1?xS of hexagonal modification.  相似文献   

5.
Interaction of copper(II) chloride with 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine leads to formation of copper(II) complex [CuCl2·2C3N3(OC3H5)3] ( I ). Electrochemical reduction of I produces the mixed‐valence CuI, II π, σ‐complex of [Cu7Cl8·2C3N3(OC3H5)3] ( II ). Final reduction produces [Cu8Cl8·2C3N3(OC3H5)3]·2C2H5OH copper(I) π‐complex ( III ). Low‐temperature X‐ray structure investigation of all three compounds has been performed: I : space group P1¯, a = 8.9565(6), b = 9.0114(6), c = 9.7291(7) Å, α = 64.873(7), β = 80.661(6), γ = 89.131(6)°, V = 700.2(2) Å3, Z = 1, R = 0.0302 for 2893 reflections. II : space group P1¯, a = 11.698(2), b = 11.162(1), c = 8.106(1) Å, α = 93.635(9), β = 84.24(1), γ = 89.395(8)°, V = 962.0(5) Å3, Z = 1, R = 0.0465 for 6111 reflections. III : space group P1¯, a = 8.7853(9), b = 10.3602(9), c = 12.851(1) Å, α = 99.351(8), β = 105.516(9), γ = 89.395(8), V = 1111.4(4) Å3, Z = 1, R = 0.0454 for 4470 reflections. Structure of I contains isolated [CuCl2·2C3N3(OC3H5)3] units. The isolated fragment of I fulfils in the structure of II bridging function connecting two hexagonal prismatic‐like cores Cu6Cl6, whereas isolated Cu6Cl6(CuCl)2 prismatic derivative appears in III . Coordination behaviour of the 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine moiety is different in all the compounds. In I ligand moiety binds to the only copper(II) atom through the nitrogen atom of the triazine ring. In II ligand is coordinated to the CuII‐atom through the N atom and to two CuI ones through the two allylic groups. In III all allylic groups and nitrogen atom are coordinated by four metal centers. The presence of three allyl arms promotes an acting in II and III structures the bridging function of the ligand moiety. On the other hand, space separation of allyl groups enables a formation of large complicated inorganic clusters.  相似文献   

6.
The cluster anion [Fe33-Se)(CO)9]2- (I) was isolated as a salt (Et4N)2[I] by the reaction of Fe(CO)5 with Na2Se in isopropanol. The protonated form, (μ-H)2Fe33-Se)(CO)9 (II), was obtained by acidifying the reaction mixture and used for the synthesis of the heterometallic cluster FeMo23-Se)(CO)7Cp2 (III), CP=η5-C5H5. The structure of I and III was established by X-ray diffraction analysis. Crystals I are monoclinic, a=14.210(3), b=11.547(3), c=19.831(2), Å, β=90.92(2)°, Vcell=3254(1) Å3, space group P2/c, Z=4, dcalc=1.550 g/cm3, Syntex P21, λCuKα, R(F)=0.1333 for 1264 Fhkl>6σ(Fhkl). Crystals III are monoclinic, a=20.440(5), b=12.771(3), c=16.342(4) Å, β=113.80(2)°, Vcell=3903(2) Å3, space group P21/c, Z=8, dcalc=2.222 g/cm3, Syntex P21, λCuKα, R(F)=0.0734 for 1116 Fhkl>4σ(Fhkl). The structure of II was inferred from the Mössbauer, IR, and1H and77Se NMR spectroscopy data.  相似文献   

7.
The crystal and molecular structure of Bis(η5-cyclopentadienyl)titanium(IV) dibromide, Ti(η5?C5H5)2Br2, has been investigated by an X-ray structure determination. Crystal data: triclinic, a = 7.872(5), b = 11.807(5), c = 12.310(3) Å, α = 107.62(3), β = 100.83(4), γ = 90.69(4)°, V = 1 068(14) Å3, T = 293, space group P1 , Z = 4 (there are two crystallographically independent molecules in the asymmetric unit cell and their conformations are similar). Final R and Rw values are 0.068 and 0.073, respectively. The structural results are compared to those for similar type molecules.  相似文献   

8.
The redetermination of the crystal structure of trigonal UCl6, which is the eponym for the UCl6 structure type, showed that certain atomic coordinates had been incorrectly reported. This led to noticeably different U−Cl distances within the octahedral UCl6 molecule (2.41 and 2.51 Å). Within the revised structure model presented here, which is based on single crystal data as well as quantum chemical calculations, all U−Cl distances are essentially equal within standard uncertainty (2.431(5), 2.437(5), and 2.439(6) Å). This room temperature modification, called rt-UCl6, crystallizes in the trigonal space group P m1, No. 164, hP21, with a=10.907(2), c=5.9883(12) Å, V=616.9(2) Å3, Z=3 at T=253 K. A new low-temperature (lt) modification of UCl6 is also presented that was obtained by cooling a single crystal of rt-UCl6. The phase change occurs between 150 and 175 K. lt-UCl6 crystallizes isotypic to a low-temperature modification of SF6 in the monoclinic crystal system, space group C2/m, No. 12, mS42, with a=17.847(4), b=10.8347(18), c=6.2670(17) Å, β=96.68(2)°, V=1203.6(5) Å3, Z=6 at 100 K. The Cl anions form a close-packed structure corresponding to the α-Sm type with uranium atoms in the octahedral voids. During the synthesis of UBr5 a new modification was obtained that crystallizes in the triclinic crystal system, space group P , No. 2, aP36, with a=10.4021(6), b=11.1620(6), c=12.2942(7) Å, α=68.3340(10)°, β=69.6410(10)° and γ=89.5290(10)°, V=1231.84(12) Å3, Z=3 at T=100 K. In this structure the UBr5 units are dimerized to U2Br10 molecules. The Br anions also form a close-packed structure of the α-Sm type with adjacent uranium atoms in the octahedral voids. Comparisons of the crystal structures of the compounds MX5 (M=Pa, U; X=Cl, Br) show that the crystal structure of monoclinic α-PaBr5 is probably not correct.  相似文献   

9.
Cu3SbS3: Crystal Structure and Polymorphism The hitherto unknown crystal structure of β-Cu3SbS3 at room temperature could be determined from a twinned crystal. The compound crystallizes in the monoclinic system, space group P21/c (No. 14), with a = 7.808(1), b = 10.233(2) and c = 13.268(2) Å, β = 90.31(1)°, V = 1 060.1(2) Å3, Z = 8. An Extended-Hückel-Calculation shows weak bonding interactions between copper atoms which are coordinated trigonal planar. At ?9°C a first order phase transition occurs and the crystals disintegrate. The low-temperature modification (γ) crystallizes in the orthorhombic system with a = 7.884(2), b = 10.219(2) and c = 6.623(2) Å, V = 533.6(2) Å3 (?100°C). At 121°C a phase transition of higher order is observed. The high-temperature polymorph (α) of Cu3SbS3 is orthorhombic again. From high-temperature precession photographs the space groups Pnma (No. 62) or Pna21 (No. 33) can be derived. The lattice constants at 200°C are a = 7.828(3), b = 10.276(4) and c = 6.604(3) Å, V = 531.2(2) Å3.  相似文献   

10.
The reactions of dithianes with W(CO)6 in refluxing chlorobenzene give dimeric alkenes and their reduced products; fluorenone derivative yielding trimer 8. A radical mechanism is suggested. The structure of 8 has been determined by a single-crystal X-ray diffraction study. Crystal data: P21/n; a = 11.948(5), b = 16.8795(14), c = 13.491(6) Å, β = 105.03(3)°, Z = 4, V = 2628(2) Å3; RF = 0.061, RWF = 0.051 for 2142 reflections and 353 variables.  相似文献   

11.
CuSeTeCl, CuSeTeBr, and CuSeTeI: Compounds with ordered [SeTe] Screws The hitherto unknown copper(I) chalcogen halides CuSeTeCl, CuSeTeBr and CuSeTeI have been prepared and their crystal structures were determined. The compounds of general composition CuSeTeX crystallize in the monoclinic system, space group P21/n (No. 14), Z = 4, a = 7.9796(9), b = 4.7645(8), c = 10.843(3) Å, β = 104.12(1)°, V = 399.8(1) Å3 (X = Cl), a = 8.155(3), b = 4.765(2), c = 11.286(4) Å, β = 104.21(3)°, V = 425.1(3) Å3 (X = Br) and a = 8.4370(9) b = 4.7652(5), c = 11.996(2) Å, β = 103.178(9)°, V = 469.6(1) Å3 (X = I). The crystal structures show infinite onedimensional screws YY′ of chalcogen atoms, with Y = Se and Y′ = Te alternately. The coordinations of Se and Te in these compounds are quite different.  相似文献   

12.
Dicarbonyl(η5‐N,N‐dimethylcarbamoylcyclopentadienyl)nitrosylchromium ( 5 ) was prepared by the reaction of the corresponding acid chloride with dimethylamine. The structure of 5 has been determined by X‐ray diffraction studies: space group, P‐1; monoclinic; a=6.406(7), b=8.805(8), c=10.710(10) Å, α=91.73(8), β=93.67(8), γ=101.96(8)°; Z=2. The exocyclic carbon is bent away from the chromium atom with a θ angle of ?0.27°. The nitrosyl group is cisoid to the exocyclic carbonyl carbon of the Cp(Cr) ring with a twist angle of 63.27°. The chemical shifts of C(2,5) and C(3,4) on the Cp ring has been assigned using two‐dimensional HETCOR NMR spectroscopy.  相似文献   

13.
Crystalline NO[Mn(NO3)3] ( I ) and (NO)2[Co(NO3)4] ( II ) were synthesized by reaction of the corresponding metal and a liquid N2O4/ethylacetate mixture. I is orthorhombic, Pca21, a = 9.414(2), b = 15.929(3), c = 10.180(2) Å, Z = 4, R1 = 0.0286. II is monoclinic, C2/c, a = 14.463(3), b = 19.154(4), c = 13.724(3) Å, β = 120.90(3), Z = 12, R1 = 0.0890. Structure I consists of [Mn(NO3)3] sheets with NO+ cations between them. Two types of Mn atoms have CNMn = 7 and 8. Structure II is ionic containing isolated [Co(NO3)4]‐anions and NO+ cations with CNCo = 8. Crystals of Mn(NO3)2 ( III ) and Co(NO3)2 ( IV ) were obtained by concentration of metal nitrate hydrate solutions in 100% HNO3 in a desiccator with P2O5. III is cubic, Pa 3, a = 7.527(2) Å, Z = 4, R1 = 0.0987. IV is trigonal, R 3, a = 10.500(2), c = 12.837(3) Å, Z = 12, R1 = 0.0354. The three dimensional structure III is isotypic to the strontium and barium dinitrates. Structure IV contains a three dimensional network of interconnected Co(NO3)6/3 units with a distorted octahedral coordination environment of Co atoms. General correlations between central atom coordination and coordination modes of NO3 groups are discussed.  相似文献   

14.
The crystal structures of α-F2 and β-F2 have been reinvestigated using neutron powder diffraction. For the low-temperature phase α-F2, which is stable below circa 45.6 K, the monoclinic space group C2/c with lattice parameters a=5.4780(12), b=3.2701(7), c=7.2651(17) Å, β=102.088(18)°, V=127.26(5) Å3, mS8, Z=4 at 10 K can now be confirmed. The structure model was significantly improved, allowed for the anisotropic refinement of the F atom, and an F−F bond length of 1.404(12) Å was obtained, which is in excellent agreement with spectroscopic data and high-level quantum chemical predictions. The high-temperature phase β-F2, stable between circa 45.6 K and the melting point of 53.53 K, crystallizes in the cubic primitive space group Pm n with the lattice parameter a=6.5314(15) Å, V=278.62(11) Å3, cP16, Z=8, at 48 K. β-F2 is isotypic to γ-O2 and δ-N2. The centres of gravity of the F2 molecules are arranged like the atoms in the Cr3Si structure type.  相似文献   

15.
Inhaltsübersicht. (I) BaCoHo2O5, (II) BaCoYb2O5 und (III) BaCoEr2O5 wurden neu dargestellt und an Einkristallen mit Röntgenbeugungsmethoden die Kristallstruktur bestimmt. (I) und (II) gehören zum BaCuSm2O5-Typ mit (I): A = 12,267; b = 5,714; c = 7,064 Å; Z = 4; (II): A = 12,138; b = 5,662; c = 7,004 Å; Z = 4. Beide kristallisieren in der Raumgruppe D162h–Pnma. (III) kristallisiert im BaNiLn2O5-Typ, Raumgruppe D252h–Immm mit a = 3,734; b = 5,770; c = 11,421 Å; Z = 2. Die Koordination um Co2+ wechselt von (I, II) nach (III) von tetragonal pyramidal nach oktaedrisch. New Oxides of the BaCuSm2O5-Type: BaCoHo2O5, BaCoYb2O5, and of the BaNiLn2O5 Type: BaCoEr2O5 (I) BaCoHo2O5, (II) BaCoYb2O5, and (III) BaCoEr2O5 are new compounds prepared by high temperature reactions. X-ray single crystal work show: (I) and (II) belong to the BaCuSm2O5-type (space group D162h-Pnma, Z = 4). (I): A = 12.267; b = 5.714; c = 7.064 Å; (II): A = 12.138; b = 5.662; c = 7,004 Å. (III) crystallizes with BaNiLn2O5-structure, space group D252h-Immm; Z = 2; a = 3.734; b = 5.770; c = 11.421 Å; within (I) and (II) Co2+ has a tetragonal pyramidal coordination by oxygen. The coordination changes in (III) to a compressed octehedral O2– surrounding.  相似文献   

16.
This paper reports on our study of the mixedligand βiminoketonate complex [PtCl(ktf)H2O] including 1,1,1-trifluoro-4-imino-2-pentanone as a ligand. An X-ray diffraction analysis was performed on a CAD-4 diffractometer (MoKα radiation, ω/2θ scan mode). Crystal data ofPtClF3O2NC5H7: a = 26.264(5), b = 4.750(1), c = 15.955(3) Å, β = 108.16(3)°, V = 1891.3Å3, space group C2/c, Z = 8, dcalc = 2.82 g/cm3. The Pt atom has a distorted square planar environment. The Pt-Cl, Pt-O(H2O), Pt-N, and Pt-O bonds are 2.29, 2.07, 1.97, and 1.98 Å in length, respectively. The chelate angle is 93.7°. The environment of Pt is completed to pyramidal due to interactions with the Cγ atom of the neighboring molecule at a distance of 3.57 Å. The compound has a molecular structure. The molecules of the complex are stacked along the Y direction.  相似文献   

17.
The crystal structures of two (hexafluoroacetylacetonato)copper(II) complexes with 3-imidazoline nitroxide radicals, [Cu(C5HF6O2)2]3 (C14H19N2O)2 (I) and [Cu(C5HF6O2)2]3 (C13H17N2O3)2 (II), have been determined. The compounds are triclinic (PI, Z=1) with a=8.730(2), b=10.357(2), c=21.996(5) Å, α=103.24(2), β=94.03(2), γ=95.04(2)0, V=1920(1) Å3 for I and a=8.679(2), b=14.769(4), c=15.368(4) Å, α=85.58(2), β=96.25(1), γ=104.60(1)0, V=1893(1) Å3 for II. Complexes I and II are molecular. The trinuclear molecules are centrosymmetric relative to the Cu(1) atom. The coordination polyhedron of Cu(1) is a square bipyramid formed by the O atoms of the hfac anions and nitroxide radicals (average Cu?Ohfac 1.92(1) for I and 1.93(1) Å for II; Cu?ON?O 2.47(1) for I and 2.56(1) Å for II). The coordination polyhedron of Cu(2) is a trigonal bipyramid formed by the O atoms of the hfac anions (Cu?Ohfac 1.91(1)–2.12(1) for I and 1.91(1)–2.09(1) Å for II) and an imine N atom of the radical (Cu(2)?N(2) 2.00(1) for I and 2.03(1) Å for II). The molecules are linked by van der Waals forces.  相似文献   

18.
Lanthanide nitrate complexes of diphosphazane dioxides Ph2P(O)N(Pri)P(O)Ph2 ( 1 ) and (PhO)2P(O)N(Me)P(O)(OPh)2 ( 2 ) have been synthesised and studied by conductometry, IR, multinuclear NMR spectroscopic methods and X-ray diffraction. Ligand 2 is accessible by two different methods, viz., by direct oxidation of the phosp(III)azane ligand or by starting from phosph(V)azane chloro precursor. The structure of 2 is confirmed by X-ray diffraction. Crystallographic data for 2 : Triclinic, Space group P1 , a = 10.078(1), b = 10.575(3), c = 12.364(4) Å, α = 75.70(2)°, α = 75.56(1)°, γ = 77.68(1)°, Z = 2, V = 1 220 Å3; structure refined to RF = 0.0459 on 3 495 data with F > 3σ(F). The diphosphazane dioxide ligand exhibits trans geometry in the solid state. The structure of a lanthanide complex, [Pr(NO3)3( 2 )2] ( 14 ) is also determined by X-ray diffraction. Crystallographic data for 14 : Trigonal, Space group P32, a = b = 15.710(2), c = 40.067(2) Å, Z = 6, V = 8 564 Å3; structure refined to RF = 0.0430 on 8 077 data with F > 5σ(F). The two diphosphazane dioxide ligands and the nitrate groups are coordinated to praseodymium in a bidentate chelate fashion. The geometry around the ten coordinated metal is distorted bicapped square antiprism.  相似文献   

19.
Reaction of MoCo(CO)5(PPh3)25-C5H5) (1a) with trimethylsilylacetylene in tetrahydrofuran at 58° C yielded two acetylene bridged heterobimetallic compounds, MoCo(CO)4(PPh3){μ-HC?CSiMe3}(η5-C5H5) (4) and MoCo (CO)5{μ-HC?CSiMe3}(η5-C5H5)(5). (4) was characterized by mass, infrared, 1H, 13C and 31P NMR spectra. The X-ray crystal structure of (4) was determined:triclinic, P-1, a=8.821(1) Å, b=11.315(3) Å, c=17.029(2) Å, α=70.73(1)°, β=78 .72(1)°, γ=86.10(2)°,V =1573.4(6) Å3, Z=2, R = 3.92%,Rw = 6.06% for 4285 (F > 4σ (F)) observed reflections. The core of this molecule is a quasi-tetrahedron containing Mo, Co and two carbons of acetylene. The triphenylphosphine ligand is attached to cobalt rather than molybdenum center.  相似文献   

20.
The Reactions of M[BF4] (M = Li, K) and (C2H5)2O·BF3 with (CH3)3SiCN. Formation of M[BFx(CN)4—x] (M = Li, K; x = 1, 2) and (CH3)3SiNCBFx(CN)3—x, (x = 0, 1) The reaction of M[BF4] (M = Li, K) with (CH3)3SiCN leads selectively, depending on the reaction time and temperature, to the mixed cyanofluoroborates M[BFx(CN)4—x] (x = 1, 2; M = Li, K). By using (C2H5)2O·BF3 the synthesis yields the compounds (CH3)3SiNCBFx(CN)3—x x = 0, 1. The products are characterized by vibrational and NMR‐spectroscopy, as well as by X‐ray diffraction of single‐crystals: Li[BF2(CN)2]·2Me3SiCN Cmc21, a = 24.0851(5), b = 12.8829(3), c = 18.9139(5) Å V = 5868.7(2) Å3, Z = 12, R1 = 4.7%; K[BF2(CN)2] P41212, a = 13.1596(3), c = 38.4183(8) Å, V = 6653.1(3) Å3, Z = 48, R1 = 2.5%; K[BF(CN)3] P1¯, a = 6.519(1), b = 7.319(1), c = 7.633(2) Å, α = 68.02(3), β = 74.70(3), γ = 89.09(3)°, V = 324.3(1) Å3, Z = 2, R1 = 3.6%; Me3SiNCBF(CN)2 Pbca, a = 9.1838(6), b = 13.3094(8), c = 16.840(1) Å, V = 2058.4(2) Å3, Z = 8, R1 = 4.4%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号