首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusion-limited binding kinetics of antigen (analyte), in solution with antibody (receptor) immobilized on a biosensor surface, is analyzed within a fractal framework. Most of the data presented is adequately described by a single-fractal analysis. This was indicated by the regression analysis provided by Sigmaplot. A single example of a dual-fractal analysis is also presented. It is of interest to note that the binding-rate coefficient (k) and the fractal dimension (Df) both exhibit changes in the same and in the reverse direction for the antigen-antibody systems analyzed. Binding-rate coefficient expressions, as a function of the Df developed for the antigen-antibody binding systems, indicate the high sensitivity of thek on the Df when both a single- and a dual-fractal analysis are used. For example, for a single-fractal analysis, and for the binding of antibody Mab 0.5β in solution to gpl20 peptide immobilized on a BIAcore biosensor, the order of dependence on the Df was 4.0926. For a dual-fractal analysis, and for the binding of 25-100 ng/mL TRITC-LPS (lipopolysaccharide) in solution with polymyxin B immobilized on a fiberoptic biosensor, the order of dependence of the binding-rate coefficients, k1 and k2 on the fractal dimensions, Df1 and Df2, were 7.6335 and-11.55, respectively. The fractional order of dependence of thek(s) on the Df(s) further reinforces the fractal nature of the system. Thek(s) expressions developed as a function of the Df(s) are of particular value, since they provide a means to better control biosensor performance, by linking it to the heterogeneity on the surface, and further emphasize, in a quantitative sense, the importance of the nature of the surface in biosensor performance.  相似文献   

2.
The diffusion-limited binding kinetics of antigen (or antibody) in solution to antibody (or antigen) immobilized on a biosensor surface is analyzed within a fractal framework. The fit obtained by a dual-fractal analysis is compared with that obtained from a single-fractal analysis. In some cases, the dual-fractal analysis provides an improved fit when compared with a single-fractal analysis. This was indicated by the regression analysis provided by Sigmaplot (San Rafael, CA). These examples are presented. It is of interest to note that the state of disorder (or the fractal dimension) and the binding rate coefficient both increase (or decrease, a single example is presented for this case) as the reaction progresses on the biosensor surface. For example, for the binding of monoclonal antibody MAb 49 in solution to surface-immobilized antigen, a 90.4% increase in the fractal dimension (Df1 toD f2 ) from 1.327 to 2.527 leads to an increase in the binding rate coefficient (k1 to k2) by a factor of 9.4 from 11.74 to 110.3. The different examples analyzed and presented together provide a means by which the antigen-antibody reactions may be better controlled by noting the magnitude of the changes in the fractal dimension and in the binding rate coefficient as the reaction progresses on the biosensor surface.  相似文献   

3.
The diffusion-limited binding kinetics of analyte in solution to either a receptor immobilized on a surface or to a receptorless surface is analyzed within a fractal framework for a surface plasmon resonance biosensor. The data is adequately described by a single- or a dual-fractal analysis. Initially, the data was modeled by a single-fractal analysis. If an inadequate fit was obtained then a dual-fractal analysis was utilized. The regression analysis provided by Sigmaplot (32) was used to determine if a single fractal analysis is sufficient or if a dual-fractal analysis is required. In general, it is of interest to note that the binding rate coefficient and the fractal dimension exhibit changes in the same direction (except for a single example) for the analyte-receptor systems analyzed. Binding rate coefficient expressions as a function of the fractal dimension developed for the analyte-receptor binding systems indicate, in general, the high sensitivity of the binding rate coefficient on the fractal dimension when both a single- and a dual-fractal analysis is used. For example, for a single-fractal analysis and for the binding of human endothelin-1 (ET-1) antibody in solution to ET-115-21.BSA immobilized on a surface plasmon resonance (SPR) surface (33), the order of dependence of the binding rate coefficient, k, on the fractal dimension, Df, is 6.4405. Similarly, for a dual-fractal analysis and for the binding of 10(-6) to 10(-4) M bSA in solution to a receptorless surface (direct binding to SPR surface) (41) the order of dependence of k1 and k2 on Df1 and Df2 were -2.356 and 6.241, respectively. Binding rate coefficient expressions are also developed as a function of the analyte concentration in solution. The binding rate coefficient expressions developed as a function of the fractal dimension(s) are of particular value since they provide a means to better control SPR biosensor performance by linking it to the degree of heterogeneity that exists on the SPR biosensor surface. Copyright 1999 Academic Press.  相似文献   

4.
A fractal analysis is presented for cellular analyte-receptor binding kinetics utilizing biosensors. Data taken from the literature can be modeled by using (a) a single-fractal analysis and (b) a single- and a dual-fractal analysis. Case (b) represents a change in the binding mechanism as the reaction progresses on the biosensor surface. Relationships are presented for the binding rate coefficient(s) as a function of the fractal dimension for the single-fractal analysis examples. In general, the binding rate coefficient is rather sensitive to the degree of heterogeneity that exists on the biosensor surface. For example, for the binding of mutagenized and back-mutagenized forms of peptide E1037 in solution to salivary agglutinin immobilized on a sensor chip, the order of dependence of the binding rate coefficient, k, on the fractal dimension, D(f), is 13.2. It is of interest to note that examples are presented where the binding coefficient (k) exhibits an increase as the fractal dimension (D(f)) or the degree of heterogeneity increases on the surface. The predictive relationships presented provide further physical insights into the binding reactions occurring on the surface. These should assist us in understanding the cellular binding reaction occurring on surfaces, even though the analysis presented is for the cases where the cellular "receptor" is actually immobilized on a biosensor or other surface. The analysis suggests possible modulations of cell surfaces in desired directions to help manipulate the binding rate coefficients (or affinities). In general, the technique presented is applicable for the most part to other reactions occurring on different types of biosensors or other surfaces. Copyright 2000 Academic Press.  相似文献   

5.
A predictive approach using fractal analysis is presented for analyte-receptor binding and dissociation kinetics for biosensor applications. Data taken from the literature may be modeled, in the case of binding using a single-fractal analysis or a dual-fractal analysis. The dual-fractal analysis represents a change in the binding mechanism as the reaction progresses on the surface. A single-fractal analysis is adequate to model the dissociation kinetics in the examples presented. Predictive relationships developed for the binding and the affinity (k(diss)/k(bind)) as a function of the analyte concentration are of particular value since they provide a means by which the binding and the affinity rate coefficients may be manipulated. Relationships are also presented for the binding and the dissociation rate coefficients and for the affinity as a function of their corresponding fractal dimension, D(f), or the degree of heterogeneity that exists on the surface. When analyte-receptor binding or dissociation is involved, an increase in the heterogeneity on the surface (increase in D(f)) leads to an increase in the binding and in the dissociation rate coefficient. It is suggested that an increase in the degree of heterogeneity on the surface leads to an increase in the turbulence on the surface owing to the irregularities on the surface. This turbulence promotes mixing, minimizes diffusional limitations, and leads subsequently to an increase in the binding and in the dissociation rate coefficient. The binding and the dissociation rate coefficients are rather sensitive to the degree of heterogeneity, D(f,bind) (or D(f1)) and D(f,diss), respectively, that exists on the biosensor surface. For example, the order of dependence on D(f,bind) (or D(f1)) and D(f2) is 6.69 and 6.96 for k(bind,1) (or k(1)) and k(2), respectively, for the binding of 0.085 to 0.339 μM Fab fragment 48G7(L)48G7(H) in solution to p-nitrophenyl phosphonate (PNP) transition state analogue immobilized on a surface plasmon resonance (SPR) biosensor. The order of dependence on D(f,diss) (or D(f,d)) is 3.26 for the dissociation rate coefficient, k(diss), for the dissociation of the 48G7(L)48G7(H)-PNP complex from the SPR surface to the solution. The predictive relationships presented for the binding and the affinity as a function of the analyte concentration in solution provide further physical insights into the reactions on the surface and should assist in enhancing SPR biosensor performance. In general, the technique is applicable to other reactions occurring on different types of biosensor surfaces and other surfaces such as cell-surface reactions. Copyright 2000 Academic Press.  相似文献   

6.
The diffusion-limited binding kinetics of antigen in solution to antibody immobilized on a biosensor surface is analyzed within a fractal framework. Changes in the fractal dimension, Df observed are in the same and in the reverse directions as the forward binding rate coefficientk. For example, an increase in the concentration of the isoenzyme human creatine kinase isoenzyme MB form (CK-MB) (antigen) solution from 0.1 to 50 ng/mL and bound to anti-CK-MB antibody immobilized on fused silica fiber rods leads to increases in the fractal dimension Df from 0.294 to 0.5080, and in the forward binding rate coefficientk from 0.1194 to 9.716, respectively. The error in the fractal dimension Df decreases with an increase in the CK-MB isoenzyme concentration in solution. An increase in the concentration of human chorionic gonadotrophin (hCG) in solution from 4000 to 6000 mIU/mL hCG and bound to anti-hCG antibody immobilized on a fluorescence capillary fill device leads to a decrease in the fractal dimension Df from 2.6806 to 2.6164, and to an increase in the forward binding rate coefficientk from 3.571 to 4.033, respectively. The different examples analyzed and presented together indicate one means by which the forward binding rate coefficientk may be controlled, that is by changing the fractal dimension or the ‘disorder’ on the surface. The analysis should assist in helping to improve the stability, the sensitivity, and the response time of biosensors.  相似文献   

7.
The diffusion-limited hybridization kinetics of analyte in solution to a receptor immobilized on a biosensor or immunosensor surface is analyzed within a fractal framework. The data may be analyzed by a single- or a dual-fractal analysis. This was indicated by the regression analysis provided by Sigmaplot (Sigmaplot, Scientific Graphing Software, User's Manual, Jandel Scientific, CA, 1993). It is of interest to note that the binding rate coefficient and the fractal dimension both exhibit changes, in general, in the same direction for both the single-fractal and the dual-fractal analysis examples presented. The binding rate coefficient expression developed as a function of the analyte concentration in solution and the fractal dimension is of particular value since it provides a means to better control biosensor or immunosensor performance. Copyright 2001 Academic Press.  相似文献   

8.
The paper presents physico-chemical properties of mixed adsorbents in the clinoptylolite (mordenite)/SiO2 system containing 30, 50, 80 mass% zeolite. Adsorption capacity towards polar (water, butanol) and non-polar (n-octane) substances as well as total surface heterogeneity (energetic and geometrical) were determined. Desorption energy distribution functions as well as fractal dimensions were also determined and compared with the low-temperature nitrogen adsorption data. Irregular shapes of the curves q=f(E d) as well as large values of volumetric fractal dimensions (D f~2.6) revealed heterogeneous properties of the zeolite/SiO2 system surfaces. Addition of zeolite increases total heterogeneity of the material.  相似文献   

9.
A fractal analysis is used to model the binding and dissociation kinetics between analytes in solution and estrogen receptors (ER) immobilized on a sensor chip of a surface plasmon resonance (SPR) biosensor. Both cases are analyzed: unliganded as well as liganded. The influence of different ligands is also analyzed. A better understanding of the kinetics provides physical insights into the interactions and suggests means by which appropriate interactions (to promote correct signaling) and inappropriate interactions such as with xenoestrogens (to minimize inappropriate signaling and signaling deleterious to health) may be better controlled. The fractal approach is applied to analyte-ER interaction data available in the literature. Numerical values obtained for the binding and the dissociation rate coefficients are linked to the degree of roughness or heterogeneity (fractal dimension, D(f)) present on the biosensor chip surface. In general, the binding and the dissociation rate coefficients are very sensitive to the degree of heterogeneity on the surface. For example, the binding rate coefficient, k, exhibits a 4.60 order of dependence on the fractal dimension, D(f), for the binding of unliganded and liganded VDR mixed with GST-RXR in solution to Spp-1 VDRE (1,25-dihydroxyvitamin D(3) receptor element) DNA immobilized on a sensor chip surface (Cheskis and Freedman, Biochemistry 35 (1996) 3300-3318). A single-fractal analysis is adequate in some cases. In others (that exhibit complexities in the binding or the dissociation curves) a dual-fractal analysis is required to obtain a better fit. A predictive relationship is also presented for the ratio K(A)(=k/k(d)) as a function of the ratio of the fractal dimensions (D(f)/D(fd)). This has biomedical and environmental implications in that the dissociation and binding rate coefficients may be used to alleviate deleterious effects or enhance beneficial effects by selective modulation of the surface. The K(A) exhibits a 112-order dependence on the ratio of the fractal dimensions for the ligand effects on VDR-RXR interaction with specific DNA.  相似文献   

10.
Summary Some porous packings used in chromatography have been claimed to be fractals with a scale of sizes a<l<L, where a is a molecular size and L is the size of the largest pores. For a fractal porous packing, the excluded volume for molecules in solution in the vicinity of the packing surface is directly related to Df, the fractal dimension of the pore surface (2<Df<3). Since retention in size exclusion chromatography is itself directly related to this excluded volume, the fractal nature of the packing provides a model of retention in this technique. According to this model there is a linear relationship between log Rs and log(1-Kd), where Rs is the hydrodynamic radius of the solute macromolecules and Kd the distribution coefficient. The fractal dimension is derived from the slope of this plot. Size exclusion chromatographic retention data have been analyzed according to the model. It is found that some HPLC packings are fractals with fractal dimensions ranging from about 2.15 to 2.6, depending on the material. Such a large range of Df values indicates large variations in the selectivities and domains of applications of the different packings. For some classical gel filtration chromatographic gels, the fractal retention model does not seem to apply.Presented at the 17th International Symposium on Chromatography, September 25–30, 1988, Vienna, Austria.  相似文献   

11.
12.
The structural complexity of the 3-D surface of poly(methylmethacrylate) films with immobilized europium β-diketonates was studied by atomic force microscopy and fractal analysis. Fractal analysis of surface roughness revealed that the 3-D surface has fractal geometry at the nanometer scale. Poly(methylmethacrylate) (PMMA) as immobilization matrix is dense and uniform, and a tendency for formation of chain structures was observed. Fractal analysis can quantify key elements of 3-D surface roughness such as the fractal dimensions D f determined by the morphological envelopes method of the Eu(DBM)3 and Eu(DBM)3 · dpp nanostructures, which are not taken into account by traditional surface statistical parameters.  相似文献   

13.
A new branched-pore adsorption model has been developed using an external mass transfer coefficient, K f, an effective diffusivity, D eff, a lumped micropore diffusion rate parameter, K b, and the fraction of macropores, f, to describe sorption kinetic data from initial adsorbent-adsorbate contact to the long-term adsorption phase. This model has been applied to an environmental pollution problem—the removal of two dyes, Acid Blue 80 (AB80) and Acid Red 114 (AR114), by sorption on activated carbon. A computer program has been used to generate theoretical concentration-time curves and the four mass transfer kinetic parameters adjusted so that the model achieves a close fit to the experimental data. The best fit values of the parameters have been determined for different initial dye concentrations and carbon masses. Since the model is specifically applicable to fixed constant values of these four parameters, a further and key application of this project is to see if single constant values of these parameters can be used to describe all the experimental concentration-time decay curves for one dye-carbon system.The error analysis and best fit approach to modeling the decay curves for both dye systems show that the correlation between experimental and theoretical data is good for the fixed values of the four fitted parameters. A significantly better fit of the model predictions is obtained when K f, K b and f are maintained constant but D eff is varied. This indicates that the surface diffusivity may vary as a function of surface coverage.  相似文献   

14.
The Homogeneous Surface Diffusion Model (HSDM) has been successfully used to predict the adsorption kinetics for several chemicals inside batch adsorber vessels. In addition to the adsorption equilibrium, this model is based on external mass transfer and surface diffusion. This paper presents the determination of the surface diffusion coefficient (D s) using a differential column batch reactor (DCBR). The adsorption kinetics for three pesticides onto granular activated carbon have been established experimentally. Their corresponding three diffusion coefficients were determined by fitting the computer simulations to the experimental concentration-time data. The results show that this original apparatus increases by an order of magnitude the range of reachable diffusion coefficient compared to perfectly mixed contactors. Moreover the computed D s values are more accurate because of the better assessment of the external mass transfer coefficient (k f) for fixed beds.  相似文献   

15.
 The flotation kinetics of coarse coal particles was studied in a modified version of the Hallimond tube at 25 °C using nitrogen as the carrier gas, in the pH range 2–12. The kinetics was followed by measuring the volume of the particles accumulated in the collector tube as a function of time. At each pH, the rate constants were determined at several buffer concentrations and were extrapolated to zero buffer concentration. The observed first-order rate constant was represented as the product of separable constants and functions such as f D, f V and f pH, which depend only on the particle size, gas flow and the pH of the dispersion, respectively. The diameter, D, of the particles was in the range 505–127 μm. The observed rate constant decreased linearly with the diameter of the particles at constant flow and it was calculated that f D=exp(−1.56D). The dependence of f V on the flow is a consequence of the fact that the flotation occurs when a single particle is captured by two bubbles. f V was shown to be independent of the particle diameter. The effect of the pH on the rate of flotation was considered as resulting from the adsorption of protons (or hydroxide ions) by the particles and bubbles through multiple equilibria, assuming that there is no interaction between the binding sites. The pH–rate profile showed that there were two species responsible for the flotation: one stable at pH below 5 and the other at high pH. Comparison of f V, f D and f pH for the flotation of coal and pyrite allowed the prediction of the optimum conditions for the separation of mixtures of these particles by flotation. Received: 6 August 2001  Accepted: 19 September 2001  相似文献   

16.
Using adsorption data, we get formulas for the calculation of fractal dimensions: log[ACO2(DP)/AN2(BET)] = −5.3984(2 −D1)/2 and log[ACO2(BET)/AN2(BET)] = −4.9569(2 −D2)/2. The fractal dimensions (D) of 27 coals and 2 cokes have been obtained. TheDof coals decreased with the increase of faand reached a maximum at H/C equal to 0.66 (orCdafabout 86%). The fractal dimension is relative to ash and volatiles of coal:D= 2.2237 + 0.6249Vdaf+ 0.8863Ad. The relationship betweenDof coal coke and its conversions (X) obeys the following equation:D = aexp(−bX) +c.  相似文献   

17.
Sadana A  Alarie JP  Vo-Dinh T 《Talanta》1995,42(10):1567-1574
A fractal analysis is presented for the binding of pyrene in solution to beta-cyclodextrin attached to a fiber-optic chemical sensor. The specific (k(l)) and non-specific binding rate coefficients and the fractal dimension (D(f)) (specific binding case only) both tend to increase as the pyrene concentration in solution increases from 12.4 to 124 ng ml(-1). Predictive relations for the binding rate coefficient (specific as well as non-specific binding) and for D(f) (specific binding case only) as a function of pyrene concentration are provided. These relations fit the calculated k(l) and D(f) values in the pyrene concentration range reasonably well. Fractal analysis data seem to indicate that an increase in the pyrene concentration in solution increases the "ruggedness" or inhomogeneity on the fiber-optic biosensor surface. The fractal analysis provides novel physical insights into the reactions occuring on the fiber-optic chemical surface and should assist in the design of fiber-optic chemical sensors.  相似文献   

18.
In this paper, the effect of sucrose concentration (x) on the dehydroepiandrosterone (DHEA)-human serum albumin (HSA) binding was investigated by a biochromatographic approach. A mathematical development based on fractal geometry is proposed to provide a more realistic picture of the DHEA-HSA binding. The fractal dimension D of the cavity surface and the thermodynamic data of the binding mechanism were calculated at different sucrose concentrations in the bulk solvent. Results showed that under a critical sucrose concentration value xc (domain I), the enhancement of the DHEA-HSA binding intensity was principally due to the increase of hydrophobic interaction between DHEA and HSA cavity. Above xc (domain II), the salting-out agent levelled the HSA cavity surface irregularity and, consequently, the DHEA affinity for the HSA decreased. Moreover, for the domain II, the HSA-DHEA binding and the thermodynamic data are discussed using fractal concept of surface fluctuations.  相似文献   

19.
Adsorbents synthesized by grafting of titania onto mesoporous silica gel surfaces at different temperatures were studied by means of nitrogen adsorption–desorption and water desorption. The pore size distribution f(Rp) of titania/silica gel depends on the titania concentration (CTiO2) and the temperature of titania synthesis. Nonuniformity of TiO2 phase is maximal at a low CTiO2 value (3.2 wt.% anatase deposited at 473 K), and two peaks of the fractal dimension distribution f(D) are observed at such a concentration of titania, but at larger CTiO2 values, only one f(D) peak is seen. More ordered filling of pores and adsorption sites by nitrogen, reflecting in the shape of adsorption energy distributions f(E) at different pressures of adsorbate, is observed for adsorbent with titania (rutile+anatase) grafted on silica gel at a higher temperature (673 K).  相似文献   

20.
In this paper we propose a solution to an unsolved problem in solid state physics, namely, the nature and structure of the glass transition in amorphous materials. The development of dynamic percolating fractal structures near Tg is the main element of the Twinkling Fractal Theory (TFT) presented herein and the percolating fractal twinkles with a frequency spectrum F(ω) ∼ ωdf–1 exp −|ΔE|/kT as solid and liquid clusters interchange with frequency ω. The Orbach vibrational density of states for a fractal is g(ω) ∼ ωdf–1, where df = 4/3 and the temperature dependent activation energy behaves as ΔE ∼ (T2T). The key concept of the TFT derives from the Boltzmann population of excited states in the anharmonic intermolecular potential between atoms, coupled with percolating solid fractal structures near Tg. The twinkling fractal spectrum F(ω) at Tg predicts the correct dynamic heterogeneity behavior via the spatio-temporal thermal fluctuation autocorrelation relaxation function C(t). This function behaves as C(t) ∼ t−1/3 (short times), C(t) ∼ t−4/3 (long times) and C(t) ∼ t−2 (ω < ωc), which were found to be in excellent agreement with published nanoscale AFM dielectric force fluctuation experiments on a glassy polymer near Tg. Using the Morse potential, the TFT predicts that Tg = 2Do/9k, where Do is the interatomic bonding energy ∼ 2–5 kcal/mol and is comparable to the heat of fusion ΔHf. Because anharmonicity controls both the thermal expansion coefficient αL and Tg, the TFT uniquely predicts that αL×Tg ≈ 0.03, which is found to be universal for a broad range of glassy materials from Pyrex to polymers to glycerol. Below Tg, the glassy structure attains a frustrated nonequilibrium state by getting constrained on the fractal structure and the thermal expansion in the glass is reduced by the percolation threshold pc as αgpcαL. The change in heat capacity ΔCp = CpLCpg at Tg was found to be related to the change in dimensionality from Df to 3 in the Debye approximation as the ratio CpL/Cpg = 3/Df, where Df is the fractal dimension of the glass. For polymers, the TFT describes the molecular weight dependence of Tg, the role of crosslinks on Tg, the Flory-Fox rule of mixtures and the WLF relation for the time-temperature shift factor aT, which are traditionally viewed in terms of Free-Volume theory. The TFT offers new insight into the behavior of nano-confined glassy materials and the dynamics of physical aging. It also predicts the relation between the melting point Tm and Tg as Tm/Tg = 1/[1−pc] ≈ 2. The TFT is universal to all glass forming liquids. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2765–2778, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号