首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the MHD flow and heat transfer of the incompressible generalized Burgers' fluid due to a periodic oscillating plate with the effects of the second order slip and periodic heating plate. The momentum equation is formulated with multi-term fractional derivatives, and by means of viscous dissipation, the fractional derivative is considered in the energy equation. A finite difference scheme is established based on the G1-algorithm, whose convergence is confirmed by the comparison with the analytical solution in an example. Meanwhile the numerical solutions of velocity, temperature and shear stress are obtained. The effects of involved parameters on velocity and temperature fields are presented graphically and analyzed in detail. Increasing the fractional derivative parameter α, the velocity and temperature have a decreasing trend, while the influences of fractional derivative parameter β on the velocity and temperature behave conversely. Increasing the absolute value of the first order slip parameter and the second order slip parameter both cause a decrease of velocity. Furthermore, with the decreasing of the magnetic parameter, the shear stress decreases.  相似文献   

2.
贾冰 《中国物理 B》2014,(5):180-190
The coexistence of a resting condition and period-1 firing near a subcritical Hopf bifurcation point, lying between the monostable resting condition and period-1 firing, is often observed in neurons of the central nervous systems. Near such a bifurcation point in the Morris-Lecar (ML) model, the attraction domain of the resting condition decreases while that of the coexisting period-1 firing increases as the bifurcation parameter value increases. With the increase of the coupling strength, and parameter and initial value dependent synchronization transition processes from non-synchronization to compete synchronization are simulated in two coupled ML neurons with coexisting behaviors: one neuron chosen as the resting condition and the other the coexisting period-1 firing. The complete synchronization is either a resting condition or period-1 firing dependent on the initial values of period-1 firing when the bifurcation parameter value is small or middle and is period- 1 firing when the parameter value is large. As the bifurcation parameter value increases, the probability of the initial values of a period- 1 firing neuron that lead to complete synchronization of period- 1 firing increases, while that leading to complete synchronization of the resting condition decreases. It shows that the attraction domain of a coexisting behavior is larger, the probability of initial values leading to complete synchronization of this behavior is higher. The bifurcations of the coupled system are investigated and discussed. The results reveal the complex dynamics of synchronization behaviors of the coupled system composed of neurons with the coexisting resting condition and period-1 firing, and are helpful to further identify the dynamics of the spatiotemporal behaviors of the central nervous system.  相似文献   

3.
李伟  张美婷  赵俊锋 《中国物理 B》2017,26(9):90501-090501
The stochastic bifurcation of a generalized Duffing–van der Pol system with fractional derivative under color noise excitation is studied. Firstly, fractional derivative in a form of generalized integral with time-delay is approximated by a set of periodic functions. Based on this work, the stochastic averaging method is applied to obtain the FPK equation and the stationary probability density of the amplitude. After that, the critical parameter conditions of stochastic P-bifurcation are obtained based on the singularity theory. Different types of stationary probability densities of the amplitude are also obtained. The study finds that the change of noise intensity, fractional order, and correlation time will lead to the stochastic bifurcation.  相似文献   

4.
This article is concerned with the effect of rotation on the general model of the equations of the generalized thermoe- lasticity for a homogeneous isotropic elastic half-space solid, whose surface is subjected to a Mode-I crack problem. The fractional order theory of thermoelasticity is used to obtain the analytical solutions for displacement components, force stresses, and temperature. The boundary of the crack is subjected to a prescribed stress distribution and temperature. The normal mode analysis technique is used to solve the resulting non-dimensional coupled governing equations of the problem. The variations of the considered variables with the horizontal distance are illustrated graphically. Some particular cases are also discussed in the context of the problem. Effects of the fractional parameter, reinforcement, and rotation on the varia- tions of different field quantities inside the elastic medium are analyzed graphically. Comparisons are made between the results in the presence and those in the absence of fiber-reinforcing, rotating and fractional parameters.  相似文献   

5.
牛玉军  王兴元  年福忠  王明军 《中国物理 B》2010,19(12):120507-120507
Based on the stability theory of the fractional order system,the dynamic behaviours of a new fractional order system are investigated theoretically.The lowest order we found to have chaos in the new three-dimensional system is 2.46,and the period routes to chaos in the new fractional order system are also found.The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent.Furthermore,a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system,and its validity is proved by Laplace transformation theory.  相似文献   

6.
邵元智  钟伟荣  林光明  李坚灿 《中国物理》2005,14(10):2110-2116
The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-nolse are studied by solving the mean-field equation of motion based on Glauber dynamics. The periodically driven stochastic ISS shows that the characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) occurs when the frequency ω and amplitude h0 of driving field, the temperature t of the system and noise intensity D are all specifically in accordance with each other in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to a zero- and a unit-dynamic order parameter. The NDPT boundary surface of the system which separates the dynamic paramagnetic phase from the dynamic ferromagnetic phase in the 3D parameter space of ho-t-D is also investigated. An interesting dynamical ferromagnetic phase with an intermediate order parameter of 0.66 is revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. The intermediate order dynamical ferromagnetic phase is dynamically metastable in nature and owns a peculiar characteristic in its stability as well as the response to external driving field as compared with a fully order dynamic ferromagnetic phase.  相似文献   

7.
A new three-dimensional (3D) system is constructed and a novel spherical chaotic attractor is generated from the system. Basic dynamical behaviors of the chaotic system are investigated respectively. Novel spherical chaotic attractors can be generated from the system within a wide range of parameter values. The shapes of spherical chaotic attractors can be impacted by the variation of parameters. Finally, a simpler 3D system and a more complex 3D system with the same capability of generating spherical chaotic attractors are put forward respectively.  相似文献   

8.
彭俊  邬云文  李小娟 《中国物理 B》2012,21(6):60302-060302
The dynamic behaviour of the two-site coupled cavities model which is doped with ta wo-level system is investigated.The exact dynamic solutions in the general condition are obtained via Laplace transform.The simple analytical solutions are obtained in several particular cases,which demonstrate the clear and simple physical picture for the quantum state transition of the system.In the large detuning or hoppling case,the quantum states transferring between qubits follow a slow periodic oscillation induced by the very weak excitation of the cavity mode.In the large coupling case,the system can be interpreted as two Jaynes-Cummings model subsystems which interact through photon hop between the two cavities.In the case of λ≈△>> g,the quantum states transition of qubits is accompanied by the excitation of the cavity,and the cavity modes have the same dynamic behaviours and the amplitude of probability is equal to 0.25 which does not change with the variation of parameter.  相似文献   

9.
齐爱学  朱斌达  王光义 《中国物理 B》2022,31(2):20502-020502
This paper presents a new hyperbolic-type memristor model,whose frequency-dependent pinched hysteresis loops and equivalent circuit are tested by numerical simulations and analog integrated operational amplifier circuits.Based on the hyperbolic-type memristor model,we design a cellular neural network(CNN)with 3-neurons,whose characteristics are analyzed by bifurcations,basins of attraction,complexity analysis,and circuit simulations.We find that the memristive CNN can exhibit some complex dynamic behaviors,including multi-equilibrium points,state-dependent bifurcations,various coexisting chaotic and periodic attractors,and offset of the positions of attractors.By calculating the complexity of the memristor-based CNN system through the spectral entropy(SE)analysis,it can be seen that the complexity curve is consistent with the Lyapunov exponent spectrum,i.e.,when the system is in the chaotic state,its SE complexity is higher,while when the system is in the periodic state,its SE complexity is lower.Finally,the realizability and chaotic characteristics of the memristive CNN system are verified by an analog circuit simulation experiment.  相似文献   

10.
姜海波  李涛  曾小亮  张丽萍 《中国物理 B》2014,23(1):10501-010501
The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincare′ map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map.  相似文献   

11.
We studied coupled dynamics of hydrodynamic fields and order parameter in the presence of nontrivial longitudinal flow using the chiral fluid dynamics model.We found that longitudinal expansion provides an effective relaxation for the order parameter,which equilibrates in an oscillatory fashion.Similar oscillations are also visible in hydrodynamic degrees of freedom through coupled dynamics.The oscillations are reduced when dissipation is present.We also found that the quark density,which initially peaked at the boundary of the boost invariant region,evolves toward forward rapidity with the peak velocity correlated with the velocity of longitudinal expansion.The peak broadens during this evolution.The corresponding chemical potential rises due to simultaneous decrease of density and temperature.We compared the cases with and without dissipation for the order parameter and also the standard hydrodynamics without order parameter.We found that the corresponding effects on temperature and chemical potential can be understood from the conservation laws and different speeds of equilibration of the order parameter in the three cases.  相似文献   

12.
A new Willis aneurysm system is proposed, which contains the Atangana–Baleanu(AB) fractional derivative.we obtain the numerical solution of the Atangana–Baleanu fractional Willis aneurysm system(ABWAS) with the AB fractional integral and the predictor–corrector scheme.Moreover, we research the chaotic properties of ABWAS with phase diagrams and Poincare sections.The different values of pulse pressure and system order are used to evaluate and compare their effects on ABWAS.The simulations verify that the changes of pulse pressure and system order are the significant reason for ABWAS'states varying from chaotic to steady.In addition, compared with Caputo fractional WAS(FWAS),ABWAS shows less state that is chaotic.Furthermore, the results of bifurcation diagrams of blood flow damping coefficient and reciprocal heart rate show that the blood flow velocity tends to stabilize with the increase of blood flow damping coefficient or reciprocal heart rate, which is consistent with embolization therapy and drug therapy for clinical treatment of cerebral aneurysms.Finally, in view of the fact that ABWAS in chaotic state increases the possibility of rupture of cerebral aneurysms, a reasonable controller is designed to control ABWAS based on the stability theory.Compared with the control results of FWAS by the same method, the results show that the blood flow velocity in the ABWAS system varies in a smaller range.Therefore, the control effect of ABWAS is better and more stable.The new Willis aneurysm system with Atangana–Baleanu fractional derivative provides new information for the further study on treatment and control of brain aneurysms.  相似文献   

13.
In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter varies. The system has rich and complex dynamical behaviors, and it is investigated in terms of Lyapunov exponents, bifurcation diagrams, Poincare′ maps, frequency spectrum, and numerical simulations. In addition, the theoretical analysis shows that the system undergoes a Hopf bifurcation as one parameter varies, which is illustrated by the numerical simulation. Finally, an analog circuit is designed to implement this hyper-chaotic system.  相似文献   

14.
Higher-order localized waves in coupled nonlinear Schr6dinger equations are investigated by the generalized Darboux transformation. We show that two dark-bright solitons together with a second-order rogue wave of fundamental or triangular pattern and two breathers together with a second-order rogue wave of fundamentM or triangular pattern coexist in the second-order localized wave for the coupled system. Moreover, by increasing the value of one free parameter, the nonlinear waves in the second-order localized wave can merge with each other. The results further reveal the abundant dynamic behaviors of localized waves in coupled systems.  相似文献   

15.
罗小华 《中国物理 B》2009,18(8):3304-3308
Based on the three-dimensional Liu system with a nonlinear term of square, this paper appends a state variable to the system, and further adds a driving signal of the sine signal to construct a novel 4-demensional nonautonomous hyperchaotic Liu system. The appended variable is formed by the product of the nonlinear quadratic term of the original state variables and the driving signal. Through adjusting the frequency of the driving signal, the system can be controlled to show some different dynamic behaviors. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the novel systems are analyzed. Furthermore, the corresponding hardware circuits are implemented. Both the experimental results and the simulation results confirm that the method is feasible. The method, which adjusts the frequency of the input sine signal to control the system to show different dynamic behaviors, can make the dynamic property of the system become more complex, but easier to be controlled accurately as well.  相似文献   

16.
周平  危丽佳  程雪峰 《中国物理 B》2009,18(7):2674-2679
In this paper,a novel hyperchaotic system with one nonlinear term and its fractional order system are proposed.Furthermore,synchronization between two fractional-order systems with different fractional-order values is achieved.The proposed synchronization scheme is simple and theoretically rigorous.Numerical simulations are in agreement with the theoretical analysis.  相似文献   

17.
SaraDadras  HamidRezaMomeni 《中国物理 B》2010,19(6):60506-060506
A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincar\'{e} maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system.  相似文献   

18.
A novel inductance-free nonlinear oscillator circuit with a single bifurcation parameter is presented in this paper. This circuit is composed of a twin-T oscillator, a passive RC network, and a flux-controlled memristor. With an increase in the control parameter, the circuit exhibits complicated chaotic behaviors from double periodicity. The dynamic properties of the circuit are demonstrated by means of equilibrium stability, Lyapunov exponent spectra, and bifurcation diagrams. In order to confirm the occurrence of chaotic behavior in the circuit, an analog realization of the piecewise-linear flux-controlled memristor is proposed, and Pspice simulation is conducted on the resulting circuit.  相似文献   

19.
王杰智  陈增强  袁著祉 《中国物理》2006,15(6):1216-1225
This paper reports a new four-dimensional hyperchaotic system obtained by adding a controller to a three-dimensional autonomous chaotic system. The new system has two parameters, and each equation of the system has one quadratic cross-product term. Some basic properties of the new system are analysed. The different dynamic behaviours of the new system are studied when the system parameter $a$ or $b$ is varied. The system is hyperchaotic in several different regions of the parameter $b$. Especially, the two positive Lyapunov exponents are both larger, and the hyperchaotic region is also larger when this system is hyperchaotic in the case of varying $a$. The hyperchaotic system is analysed by Lyapunov-exponents spectrum, bifurcation diagrams and Poincar\'{e} sections.  相似文献   

20.
贾红艳  陈增强  袁著祉 《中国物理 B》2010,19(2):20507-020507
By introducing an additional state feedback into a three-dimensional autonomous chaotic attractor Lü system, this paper presents a novel four-dimensional continuous autonomous hyper-chaotic system which has only one equilibrium. There are only 8 terms in all four equations of the new hyper-chaotic system, which may be less than any other four-dimensional continuous autonomous hyper-chaotic systems generated by three-dimensional (3D) continuous autonomous chaotic systems. The hyper-chaotic system undergoes Hopf bifurcation when parameter c varies, and becomes the 3D modified Lü system when parameter k varies. Although the hyper-chaotic system does not undergo Hopf bifurcation when parameter k varies, many dynamic behaviours such as periodic attractor, quasi periodic attractor, chaotic attractor and hyper-chaotic attractor can be observed. A circuit is also designed when parameter k varies and the results of the circuit experiment are in good agreement with those of simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号