首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
柳延辉 《物理学报》2017,66(17):176106-176106
非晶合金是一种不同于传统合金材料的新型合金,其突出的机械、物理、化学等性能在工程应用领域备受关注.作为一种具有无序原子结构的新型合金,非晶合金中蕴含的丰富的物理现象在基础研究领域也备受瞩目.非晶合金往往由多个组元构成,这给成分优化和性能调制带来了巨大的挑战.材料基因组方法是最近发展起来的新方法,通过高通量制备和结构表征以及性能筛选有望加快新型非晶合金材料的探索,在高通量表征中获得的大量实验数据可以帮助人们理解非晶合金中的科学问题.本文主要介绍高通量制备和表征在非晶合金中的应用,通过列举典型案例,展示通过高通量方法探索新型非晶合金材料的作用.  相似文献   

2.
As a tool to facilitate future material explorations, our group has developed a new combinatorial system for the high-throughput preparation of compounds made up of more than three components. The system works in two steps: the atomization of a liquid by a high electric field followed by deposition to a grounded substrate. The combinatorial system based on this method has plural syringe pumps. The each starting materials are fed through the syringe pumps into a manifold, thoroughly mixed as they pass through the manifold, and atomized from the tip of a stainless steel nozzle onto a grounded substrate.  相似文献   

3.
金魁  吴颉 《物理学报》2021,(1):54-70
铜氧化物超导体和铁基高温超导体是已知的两类高温超导体,研究高温超导机理是如今超导领域最具有挑战性的前沿课题.构建高温超导的高维精确相图、寻找决定超导转变温度的关键物理量可以为高温超导机理做好实验铺垫.对于铜氧化物高温超导体,多种自由度的相互关联与耦合使其相图呈现出复杂性与多样性.现有的研究方法在构建高维“全息”相图及获取定量化物理规律等方面面临着难以克服的困难,而材料的高通量制备与表征技术可以在相图空间实现参量的线扫描甚至面扫描,有望快速建立可靠的高温超导高维相图和高温超导关键参量数据库,并从中提取重要的统计物理规律.本文从阳离子掺杂、母体氧掺杂、双电层晶体管(静电场/电化学)、磁场等几个调控维度,回顾了主要基于输运手段获得的铜氧化物电子态相图,介绍了基于脉冲激光沉积技术和分子束外延技术的组合薄膜生长方法以及与之匹配的跨尺度选区输运测量技术,展示了高通量技术在高温超导研究中的初步应用.高通量实验技术与超导研究结合,逐步形成了新兴的高通量超导研究范式,将在构建高维精确相图、突破高温超导机理、推进超导材料实用化等方面发挥不可替代的作用.  相似文献   

4.
Fast synthesis and screening of materials are vital to the advance of materials science and are an essential component of the Materials Genome Initiative. Here we use copper-oxide superconductors as an example to demonstrate the power of integrating combinatorial molecular beam epitaxy synthesis with high-throughput electric transport measurements. Leveraging this method, we have generated a phase diagram with more than 800 compositions in order to unravel the doping dependence of interface superconductivity. In another application of the same method, we have studied the superconductorto-insulator quantum phase transition with unprecedented accuracy in tuning the chemical doping level.  相似文献   

5.
Informatics tools are an important part of the high-throughput or combinatorial materials development process. Particularly for thin film studies, the rate of sample synthesis and characterization has increased to a point where the throughput of the whole materials development process is limited by the ability to process the characterization data and design new experiments. We describe in this work software tools that we have developed to solve the data management problems. In particular, we discuss the use of extensible markup language (XML) to address the problem of representing structurally varied experimental data in a data management system without having to make modifications to the core software parts whenever the materials processing or characterization tools or sample and data handling procedures change.  相似文献   

6.
肖睿娟  李泓  陈立泉 《物理学报》2018,67(12):128801-128801
近年来,在锂二次电池新材料的研发过程中逐渐建立了基于材料基因组思想的高通量计算理论工具与研究平台.在该平台上,通过将不同精度的计算方法组合,实现了基于离子输运性质的材料筛选;通过将信息学中数据挖掘算法引入高通量计算数据的分析,证实了材料大数据解读的可行性.上述平台实现了在锂电池固体电解质的高通量筛选、优化和设计上进行新材料研发的示范应用,通过高通量计算筛选获得了两种可用于富锂正极包覆材料的化合物Li_2SiO_3和Li2SnO_3,有效改善了富锂正极的循环稳定性;通过对掺杂策略的高通量筛选,获得了提高固体电解质β-Li_3PS_4离子电导率和稳定性的方案;通过高通量结构预测设计了全新的氧硫化物固体电解质LiAlSO;并在零应变电极材料结构与性能的构效关系研究中进行了大数据分析的尝试,分析了零应变电极材料的设计依据.上述材料基因组方法在锂电池材料研发中的应用为在其他类型材料研发中推广这种新的研发模式提供了可能.  相似文献   

7.
Summary Combinatorial methodologies have dramatically changed the chemical research and discovery process, offering an unlimited source of new molecule entities to be screened for activity. The application of microwave irradiation in Combinatorial Chemistry and high-throughput synthesis has become increasingly popular. By taking advantage of this energy source, compound libraries for lead generation can be assembled in a fraction of time required by conventional thermal heating. This review focuses on the advances in developing synthetic methodologies in microwave without polymer-supported reagents suitable for combinatorial chemistry, including the advances in microwave-assisted fluorous synthesis technology.  相似文献   

8.
Combinatorial chemistry was introduced in the 1980s. It provided the possibility to produce new compounds in practically unlimited number. New strategies and technologies have also been developed that made it possible to screen very large number of compounds and to identify useful components in mixtures containing millions of different substances. This dramatically changed the drug discovery process and the way of thinking of synthetic chemists. In addition, combinatorial strategies became useful in areas such as pharmaceutical research, agrochemistry, catalyst design, and materials research. Prof. árpád Furka is one of the pioneers of combinatorial chemistry.  相似文献   

9.
核磁共振(Nuclear Magnetic Resonance,NMR)以无辐射、非入侵、高分辨率及信息丰富等特点被广泛应用在化学、生物、医药、材料等领域.纯化学位移技术,因其能大幅提高NMR重叠谱图分辨率的优良特性,近年来逐渐成为NMR领域的研究热点.本文结合作者所在团队在纯化学位移新技术及其应用研究的基础上,评述了纯化学位移技术的发展现状,及其机遇与挑战.  相似文献   

10.
The application of combinatorial and high-throughput approaches in polymer research is described. An overview of the utilized synthesis robots is given, including different parallel synthesizers and a process development robot. In addition, the application of the parallel synthesis robots to reversible addition fragmentation termination (RAFT) radical polymerizations and ionic copolymerizations is overviewed. Moreover, first results concerning the process development of semi-batch free radical polymerizations are described.  相似文献   

11.
We have developed a high-throughput combinatorial terahertz (THz) time-domain spectrometer (CTTDS) and applied to a ternary composition-spread film. This technique has possibilities to reveal a variety of physical properties such as complex refractive index, complex dielectric constant, and complex electrical conductivity. Further, this method is a non-contact and non-destructive way to map those physical properties. The demonstration of THz transmittance mapping of ternary composition-spread film, with a spatial resolution of 1 mm, reveals metallic behavior in specific range of film compositions. This prospective technique may serve as a convenient tool for the high-throughput, non-contact, non-destructive, and spatially resolved characterization suited for combinatorial composition-spread films.  相似文献   

12.
13.
凌仕刚  高健  肖睿娟  陈立泉 《中国物理 B》2016,25(1):18208-018208
The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives.With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow,many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed.  相似文献   

14.
Summary With the advent of combinatorial chemistry a new paradigm is evolving in the field of drug discovery. The approach is based on an integration of chemistry, high-throughput screening and automation engineering. The chemistry arm is usually based on solid-phase synthesis technology as the preferred approach to library construction. One of the most powerful of the solid-phase methods is encoded split synthesis, in which the reaction history experience by each polymeric bead is unambiguously recorded. This split-and-pool approach, employing chemically robust tags, was used to construct a 85 000-membered dihydrobenzopyran library.  相似文献   

15.
As an emerging technology, hyperspectral imaging (HSI), which combines both advanced spectroscopy and imaging techniques, provides sufficient information for spectral and spatial analysis and is thus suitable for distribution and property investigation of nanoscale materials. Considering the applications of HSI have spread from remote sensing to quality control of macro products such as food and milk, this article reviews recent research of HSI in a new field of nanoscale materials. On the basis of fundamental parts of a HSI system, new techniques fitting specifically for nanoscale materials imaging such as dark field and Raman spectroscopy are introduced. Nanoscale materials, including metal nanoparticles, carbon nanotubes and graphene, biological components in cells and tissues, as well as multi-layer nanoscale materials, are the research hotspots utilizing HSI technology. Related research reports of the above materials are reviewed based on the physical distinction of these nanoscale materials. It is believed that HSI technology is a strongly potential technique for property investigation and manipulation of nanomaterial for various applications.  相似文献   

16.
定向诱导基因组局部突变技术(Targeting Induced Local Lesions IN Genomes, 简称TILLINC)是一种全新的、高通量和低成本反向遗传学研究方法。近年来, 随着突变筛选技术的革新, TILLING技术平台日趋多元化, 使得TILLING技术的操作更为简单﹑快速, 并广泛应用于作物育种研究领域。简要介绍了TILLING技术平台的最新发展动态, 并初步探讨了将辐射诱变处理与TILLING高通量筛选相结合在诱变育种中的应用前景。To investigate the M1 biological effects of heavy ions irradiation on Lycopersicon esculentum Mill., its seeds were irradiated by 12C6+heavy ions (80 MeV/u) with the dosages of 30, 60, 90, 120 and 160 Gy respectively . The results showed that with doses increased gradually, germination rate and seedling rate of Lycopersicon esculentum Mill. were decreased, and the latter was lower than the former, mainly due to the inhibition of root growth. The irradiation increased the content of MDA and proline evidently, showing irradiation could damage biomembrane, and also decreased the activities of POD and SOD with distinct inhibition pattern. However, the low dose and high dose irradiation promoted APX activity, illustrating APX was induced to protect irradiation injury. In brief, exposure to 12C6+ heavy ions had obvious injury effects on the seeds of Lycopersicon esculentum Mill.. Heavy ions irradiation damaged biomembrane, inhibited activities of enzymes, and finally inhibited the growth of the first generation of these seeds.  相似文献   

17.
A rapid and straightforward method for high-throughput analysis of single resin beads from one-bead-one-compound combinatorial libraries with high resolution electrospray ionization tandem mass spectrometry (HR ESI-MS/MS) is presented. The application of an efficient method of peptide derivatization by quaternary ammonium salts (QAS) formation increases ionization efficiency and reduces the detection limit, allowing analysis of trace amounts of compounds by ESI-MS. Peptides, synthesized on solid support, contain a new cleavable linker composed of a Peg spacer (9-aza-3,6,12,15-tetraoxa-10-on-heptadecanoic acid), lysine with ?-amino group marked by the N,N,N-triethylglycine salt, and methionine, which makes possible the selective cleavage by cyanogen bromide. Even a small portion of peptides derivatized by QAS cleaved from a single resin bead is sufficient for sequencing by HR ESI-MS/MS experiments. The developed strategy was applied to a small training library of α chymotrypsin substrates. The obtained results confirm the applicability of the proposed method in combinatorial chemistry.  相似文献   

18.
高分子材料以其优异的性能广泛应用于人类生活的每个角落,但其发展受限于研究手段.基于同步辐射先进光源的研究方法(如散射、吸收和成像等)具有高的空间、时间和能量分辨的优势,是揭示高分子材料多尺度结构形成和演化动力学最有效的工具之一.文章结合作者和国内外同行的工作,以具体案例的形式介绍了同步辐射技术在高分子材料结构研究中的应用.希望能起到抛砖引玉的作用,吸引更多的从事高分子材料结构研究的同行利用同步辐射开展科学研究,同时希望更多的进行物理学研究的同行来帮助回答高分子物理的一些基本科学问题.  相似文献   

19.
Summary Benchtop robotic systems are inexpensive, flexible automation tools with potential applications in a wide array of disciplines such as combinatorial chemistry, high-throughput screening, and genomics. We explain the basic components of a benchtop system and explore factors to consider when purchasing or customizing a robot, such as automation benefits, vendor selection, and current system limitations. Issues involving system specification, software design, and hardware customization are then discussed. Additionally, system optimization, validation, and support are detailed. Given a properly designed and implemented system, the combinatorial laboratory can markedly increase compound synthesis and purification.  相似文献   

20.
A combinatorial workflow has been produced for the development of novel, environmental-friendly marine coatings. A particularly challenging aspect of the workflow development was the selection and development of high-throughput screening methods that allow for some degree of prediction of coating performance in the aquatic environment of interest. The high-throughput screening methods currently in place include measurements of surface energy, viscoelastic properties, pseudobarnacle adhesion, and a suite of biological assays based on various marine organisms. An experiment involving a series of fouling-release coatings was used to correlate high-throughput screening data to data obtained from ocean site immersion testing. The results of the experiment showed that both bacterial biofilm surface coverage and storage modulus at 30 °C showed a good correlation with barnacle adhesion strength and a fair correlation with fouling rating, but surface energy and pseudobarnacle adhesion did not correlate with the results from ocean site testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号