首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1IntroductionLaserlightscateringmeasurement,whichisbasedontheMiescateringandFraunhoferdifractiontheory,iswidelyusedowingtoits...  相似文献   

2.
叶尖小翼对扩压叶栅气动特性影响的数值研究   总被引:5,自引:0,他引:5  
通过在叶片顶端加装小翼来降低叶顶二次流的叶尖小翼技术在叶轮机械领域受到关注。本文对具有不同叶尖小翼方案的压气机叶栅进行了全三维数值模拟,并详细分析了叶尖小翼对叶顶间隙流场的影响.结果表明,合理选择叶尖小翼的安装位置及自身宽度可以在一定程度上降低叶顶泄漏损失,在叶顶吸力面侧加装宽度为5 mm的小翼可以较好的削弱泄漏流动的强度,减少泄漏涡卷吸起更多的吸力面/端壁角区的低能流体及较早地阻止上通道涡的形成和发展。  相似文献   

3.
The flowability of powders with different mass median diameters ranging from micrometers to nanometers was measured using the vibration shear tube method. In the measurement system used in this study, the powder was discharged through a narrow gap between a vibrating tube edge and a flat bottom surface, where each particle could experience high shear forces to overcome the adhesion and friction forces. The vibration amplitude was increased during the measurement, and the mass of particles discharged was measured at constant time intervals. From the relationship between the mass flow rate and the vibration acceleration, static and dynamic properties of the powders were evaluated using the critical vibration acceleration, characteristic mass flow rate, and gradient of mass flow rate. The correlation between the static and dynamic properties was studied in detail.  相似文献   

4.
巨永林  王超  周远 《计算物理》1998,15(4):419-428
针对脉冲管制冷机内部交变流动及多孔介质蓄冷机的特点建立了数值计算模型,采用改进的数值模拟方法对脉冲管制冷机内部气流的交变流动、换热以及制冷过程进行了详尽的数值研究,得到了脉冲管制冷机内各参数的动态变化,分析了各动态参数变化对制冷机整机性能的影响,并从提高数值方程的计算精度和收敛性方面给出了改进的数值模拟方法。模拟分析与实验结果符合良好。该模拟方法的特点从基本流动换热微分方程出发,尽可能多的考虑实际制冷机工作过程中的各种不可逆因素,包括实际气体的物性变化,各部件的流动阻力和传热损失。  相似文献   

5.
An instrument enabling the measurement, at a high sampling rate, of the mass of a powder flowing from a vibrating spatula has been constructed. Semiconductor strain gauges were used in the instrument as sensitive and rapid-response transducers facilitating mass measurement in these studies. Data collection and processing was performed automatically by computer. Computer software was developed for analysis of fractal dimension as a component of the instrument, to automate an established method for determination of the temporal fractal dimension of mass flow data. The rise time response of the instrument was an order of magnitude faster than instrumentation used previously [1]. Fractal dimensions determined using this instrument in a study of lactose powders on a vibrating spatula were approximately an order of magnitude larger than those reported previously.  相似文献   

6.
The effect of electrostatic force on the evolution of sand saltation cloud   总被引:10,自引:0,他引:10  
In a wind-blown sand layer, it has been found that wind transport of particles is always associated with separation of electric charge. This electrification in turn produces some electrostatic forces in addition to the gravitational and fluid friction forces that affect the movement of saltating sand particles, further, the wind-blown sand saltation. To evaluate this effect quantitatively, this paper presents a simulation of evolution of wind-blown sand grains after the electrostatic forces exerted on the grains are taken into account in the wind feedback mechanism of wind-blown saltation. That is, the coupling interaction between the wind flow and the saltating sand particles is employed in the simulation to the non-stationary wind and sand flows when considering fluid drag, gravitation, and a kind of electrostatic force generated from a distribution of electric field changing with time in the evolution process of the sand saltation. On the basis of the proposed simulation model, a numerical program is given to perform the simulation of this dynamic process and some characteristic quantities, e.g., duration of the system to reach the steady state, and curves of the saltating grain number, grain transport rate, mass-flux profile, and wind profile varying with time during the non-stationary evolution are displayed. The obtained numerical results exhibit that the electrostatic force is closely related to the average charge-to-mass ratio of sand particles and has obvious influence on these characteristic quantities. The obtained results also show that the duration of the system to reach the steady state, the sand transport rate and the mass flux profile coincide well with experimental results by Shao and Raupach (1992) when the average charge-to-mass ratio of sand particles is 60 μC/kg for the sand particles with average diameter of 0.25 mm. When the average charge-to-mass ratios of sand particles are taken as some other certain values, the calculation results still show that the mass flux profiles are well in agreement with the experimental data by Rasmussen and Mikkelsen (1998) for another category of sand particles, which tell us that the electrostatic force is one of main factors that have to be considered in the research of mechanism of wind-blown sand saltation.  相似文献   

7.
A method for visualization and determination of local and integral mass transfer coefficients at solid walls in liquid flow is presented. The method is based on chemisorption of a dye at a surface coated with polyamide. This results in a colour intensity distribution which corresponds to the local mass transfer: a high mass transfer rate results in a high colour intensity and vice versa. Chromatographic foils and polyamide membranes are used for the coating of the surface. This method allows the investigation of surface flow phenomena in channels with wall suction by using membranes. The experimental method based on convective mass transfer in liquid flow allows the investigation of flow phenomena near the wall in various apparatuses for heat and mass transfer. There are new possibilities for research of mass transfer in gas-liquid flow and systems with free surfaces, for example stirred reactors. The method can also be used for the analysis of mixing behaviour and residence time distribution. The quantification of the local mass transfer coefficient is made by optical measurements of the resulting colour intensity distribution. This is made by remission photometry or digital image processing. The application of different CCD-cameras and scanning systems is explained. The correlation between the optical measurement and the transferred mass is evaluated in simple but effective calibration experiments. Some examples of investigations show the practicability of the method.  相似文献   

8.
为研究人体鼻腔内的气体流动和颗粒沉积状况,基于19岁男志愿者的螺旋CT医学图像,采用医学有限元方法和逆向工程技术,重构了真实人体鼻腔的三维几何模型.采用RNG k-ε湍流模型和有限差分数值方法对志愿者在Q=15 L/min(人体平静时刻)、Q=30 L/min(小负荷运动时刻)、Q=60 L/min(大负荷运动时刻)三种呼吸强度下的鼻腔内的气体流动特性进行了数值模拟与分析,得到了呼吸时鼻腔内的压力和气流分布规律,并在拉格朗日框架下跟踪了颗粒的运动和沉积.以3μm粒径颗粒为研究对象,可视化显示了其在鼻腔内的沉积位置.本研究对呼吸时人鼻腔中气体流动特性、气雾剂治疗等问题深入探讨具有参考价值.  相似文献   

9.
丁红兵  王超  赵雅坤 《物理学报》2014,63(16):164701-164701
氢气作为最有希望的清洁可再生能源之一,已被广泛应用于航天、工业和燃料电池等领域.临界流喷嘴由于其测量过程不受下游扰动的影响,越来越多地被应用于氢气特别是高压氢气的流量测量.而作为真实气体的氢气在临界流喷嘴中的流动规律更加复杂,准确获得喷嘴喉部氢气的热力学参数对于氢气的精确测量至关重要.结合真实气体显式亥姆霍兹能量方程,利用熵焓关系分析并通过迭代获得了喷嘴喉部容积等熵指数这一基本流动参数.提出了最优化获取显式快速计算模型的回归算法,引入了进化算法思想,利用选择、交换和变异等方式寻找显著性和精度最优的种群个体.回归标准偏差为0.0089%,平均残差为0.0285%,最大残差为0.1781%.结果表明,所提出的算法能快速搜索满足显著性和精度要求的最优解,在提高回归方程质量的同时使方程项数达到最少,具有较好的抑制过拟合的能力.所提出的算法也可用于其他各类流体设备的不同介质流场特性参数模型的建立.  相似文献   

10.
为更精确地描述真实人体呼吸道内的空气流动,明晰颗粒的运动沉积规律,本文从直接医学CT扫描得到的原始数据出发,利用图像辨识技术,重构了一个男性真人气管支气管树前三级的三维几何模型.采用大涡模拟的方法计算了非规则几何曲面结构内的气体流动现象,并在拉格朗日框架下跟踪颗粒的运动规律.数值计算得到了气流场的三维分布,以及颗粒的运动轨迹情况,结果表明现有基于Weibel的对称模型与真实人体的几何结构有较大的差异,而几何结构对流动影响较大;受非对称复杂结构影响,在不同截面的二次气流速度的分布规律不同;分叉后颗粒进入左右支气管的数量有明显的不同.  相似文献   

11.
赵子渊  李昱君  王富帅  张祺  厚美瑛  李文辉  马钢 《物理学报》2018,67(10):104502-104502
废旧橡胶制品颗粒与砂土颗粒混合物作为建筑填充材料具有环保、轻质、减震效果好等特点.软硬组分的混合比例可以调制体系力学性能从而实现兼顾材料柔韧性与强度的需求,但细观层面上材料性能改变的原因尚不明确.本文主要研究玻璃-橡胶混合颗粒体系的弹性行为及其微观机制.利用飞行时间法测量混合材料等效动弹性模量,发现随着橡胶颗粒增加,体系逐渐从类玻璃刚性行为转变为类橡胶柔性行为.离散元模拟结果与实验结果类似.此外,模拟显示低橡胶颗粒占比样品内主要由玻璃颗粒构成主力链结构,而橡胶颗粒基本不参与强力链的构成.当橡胶颗粒占比较大时,玻璃颗粒和橡胶颗粒共同构成主力链网络结构,但颗粒间法向接触力分布相对更为均匀,可视为玻璃颗粒悬浮于橡胶颗粒中.基于上述结果,提出了改进的等效介质理论,用于描述混合颗粒体系的弹性行为.研究认为:橡胶颗粒占比较小时内部颗粒的变形相对均匀,材料近似满足等应变假设,视为并联弹簧模型;橡胶颗粒占比较大时混合材料近似满足等应力假设,视为串联弹簧模型.两种模型得到的结果与模拟结果一致.上述结果有利于从微观角度揭示混合颗粒材料弹性行为的变化机制.  相似文献   

12.
In recent years, much progress has been made in the direct numerical simulation of laminar-turbulent transition of hypersonic boundary layer flow. However, most of the efforts at the direct numerical simulation of transition previously have been focused on the idealized perfect gas flow or “cold” hypersonic flows. For practical problems in hypersonic flows, high-temperature effects of thermal and chemical nonequilibrium are important and cannot be modeled by a perfect gas model. Therefore, it is necessary to include the real gas models in the numerical simulation of hypersonic boundary layer transition in order to accurately predict flow field parameters. Currently most numerical methods for hypersonic flow with thermo-chemical nonequilibrium are based on shock-capturing approach at relatively low order of accuracy. Shock capturing schemes reduce to first-order accuracy near the shock and have been shown to produce spurious oscillations behind curved strong shocks. There is a need to develop new methods capable of simulating nonequilibrium hypersonic flow fields with uniformly high-order accuracy and avoid spurious oscillations near the shock. This paper presents a fifth-order shock-fitting method for numerical simulation of thermal and chemical nonequilibrium in hypersonic flows. The method is developed based on the state-of-the-art real gas models for thermo-chemical nonequilibrium and transport phenomena. Shock-fitting approach is used because it has the advantage of capturing the entire flow field with high-order accuracy and without any oscillations near the shock. The new method has been tested and validated for a number of test cases over a wide span of free stream conditions. The developed method is applied for the study of receptivity of free stream acoustic waves over a blunt cone for hypervelocity flow. Some preliminary results of the computations of the high order shock fitting method for the above mentioned study have also been presented.  相似文献   

13.
A direct numerical simulation of particle dispersion in particle-laden swirling jets issued into a rectangular container through a round nozzle is carried out. The swirl number is S=1.42 when the bubble vortex breakdown takes place. Two cases are simulated for comparison, i.e. five types of particles with Stokes numbers St=0.01, 0.1, 1, 10 and 100 respectively under the same flow rate, and four types of particles with St=0.5, 1, 5 and 10 respectively under the same mass loading. After simulation, it is found that the rectangular flow domain induces an important modification to the flow structure. It influences the dispersion characteristics in the peripheral cross area, forming a centrosymmetric dispersion of particles in the cross-sectional area. A quantitative analysis of the non-uniform particle dispersion is carried out. Moreover, the effect of mass loading on particle dispersion is explored and explained. It indicates the correlation between the inter-phase moment coupling and particle mass loading via the change of probability density function of the inter-phase velocity difference. Heavy mass loading causes an insufficient inter-phase momentum transport and the worse dispersion of large particles than that of small mass loading.  相似文献   

14.
15.
张小航  曾波  李少甫  刘艺 《强激光与粒子束》2018,30(11):114003-1-114003-6
对层析粒子图像测速(PIV)技术中示踪粒子成像部分进行理论分析,并结合真实风洞的相应参数,通过搭建模拟粒子成像平台的方法来进行研究。设计了一套体积为80 mm×100 mm×100 mm的激光照明系统,以提供粒子场的入射光强。建立了示踪粒子的三维成像模型,从而得到层析PIV系统的模拟图像。分析了影响PIV系统成像质量的相关因素。在单像素粒子数为0.007 7的情况下,通过真实粒子图像和模拟粒子图像比较,验证了该方法的正确性。  相似文献   

16.
Numerical investigation of the plasma processes in a cylindrical chamber with small dimensions of a novel microwave electrothermal plasma thruster for nanosatellites has been conducted. The absorbed microwave power from the electrons in the plasma column of the surface wave discharge is included in the computational model as a heat source with Gaussian distribution. The computational model takes into account the elastic and inelastic collisions of the electrons with the atoms in the ground state and two excited states (−s, −p) and the processes of recombination and deactivation of the plasma species in the volume and on the walls of the chamber. The computational model includes the flow of neutral gas and the processes in the plasma for effective heating of neutral particles by collisions not only with electrons but also with ions. Selected combinations of input power and propellant mass flow rates are used as initial parameters for the numerical investigation. The results show that at higher mass flow rates the heating of the neutral gas is more effective and at power levels of 4 W and propellant mass flow rate of 3 mg/s the electrothermal plasma thruster demonstrates effective performance and thrust levels in the order of 1 mN.  相似文献   

17.
Sand particles blown by wind cause serious environmental problems and many researchers are trying to understand the dynamic properties of blown sand better. But the existing numerical approaches have not been able to simulate many important characteristics of wind-sand flow. In this paper, the evolution and fluctuation properties of blown sand at a dynamic steady state are investigated by using a more effective method. Using the LES (large eddy simulation) method for air phase movement and the DEM (discrete element method) for solid phase movement along with the existing particle-bed splashing function, we have characterized the whole movement property of the wind-sand system. The results indicate that the saturation time decreases with the inlet friction velocity, and it gradually reaches the shortest saturation time of about 1s; the saturation length, which is about 14 m at the usual wind velocity, first increases with wind velocity and then reaches a plateau; within the saturation length, the sand transport rate at different positions varies with time; the sand transport rate of the stable wind-sand flow is non-uniform with distance downwind and time, and has a notable correlation with the inflow friction velocity.  相似文献   

18.
Previously, we have proposed to analyse the hydrodynamic interactions in a suspension of swimmers with respect to an effective hydrodynamic diffusion coefficient, which only considers the fluctuating motion caused by the stirring of the fluid. In this work, we study the diffusion of colloidal particles immersed in a bath of swimmers. To accurately resolve the many-body hydrodynamic interactions responsible for this diffusion, we use a direct numerical simulation scheme based on the smooth profile method. We consider a squirmer model for the self-propelled swimmers, as it accurately reproduces the flow field generated by real microorganisms, such as bacteria or spermatozoa. We show that the diffusion coefficients of the colloids are comparable with the effective diffusion coefficients of the swimmers, provided that the concentration of swimmers is high enough. At low concentrations, the difference in the way colloids and swimmers react to the flow leads to a reduction in the diffusion coefficient of the colloids. This is clearly seen in the appearance of a negative-correlation region for the velocity-correlation function of the colloids, which does not exist for the swimmers.  相似文献   

19.
王平  尹玉真  沈胜强 《物理学报》2014,63(21):214401-214401
利用CFD软件数值研究了颗粒三维有序堆积多孔介质的对流换热问题. 采用颗粒直径分别为14 mm,9.4 mm和7 mm的球形颗粒有序排列构成多孔介质骨架,在多孔骨架的上方有一恒热流密度的铜板. 采用流固耦合的方法研究了槽通道内温度分布和局部对流换热系数的分布以及对流换热的影响因素. 研究结果表明:热渗透的厚度和温度边界层的厚度在流动方向上逐渐增大,并且随流量的增加而减小;当骨架的导热系数比较高时,对流换热随颗粒直径的减小而略有增大;对流换热系数随聚丙烯酰胺溶液浓度的增大而减小,黏性耗散减弱了对流换热. 关键词: 多孔介质 温度场 局部对流换热系数 数值模拟  相似文献   

20.
为了实现同时兼顾大、小颗粒测量的液体颗粒计数,在分析细小光束照射下球形颗粒脉冲信号波形特征的基础上,提出了一种颗粒粒径信息提取方法,该方法通过对脉冲信号积分将颗粒脉冲信号的幅度与持续时间结合,可更加准确地提取颗粒的等效粒径信息.对理想脉冲信号进行数值模拟,并采用乳胶微粒标准物质进行实验测试,结果表明,该方法能够有效地提取大颗粒和小颗粒的粒径信息,从而拓宽了仪器检测范围.同时,分析了流速和噪声对该方法提取粒径准确性的影响,结果表明当流速波动小于10%时,测量误差小于5.41%;当噪声小于1%时,测量误差小于0.50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号