首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
用亲水金、憎水二氧化硅纳米颗粒固定葡萄糖氧化酶(GOD),采用聚乙烯醇缩丁醛(PVB)为辅助固酶膜基质来制备葡萄糖生物传感器,并考察了亲水金、憎水二氧化硅纳米颗粒对酶电极电流响应的影响.实验表明,引入纳米粒子可显著增强电极响应灵敏度.并对两种不同性质纳米颗粒所起作用的可能机理进行讨论,从理论和实验上证明了纳米颗粒对固定酶的作用.为制备有实用价值的葡萄糖生物传感器提供了可供参考的实验和理论依据.  相似文献   

2.
以聚乙烯醇缩丁醛为固定葡萄糖氧化酶(GOD)的载体,将GOD附在铂丝电极上并采用高氯酸·三-2,2'-联吡啶合钴(Ⅲ)[Co(bpy)3(ClO4)3]作为电子媒介体制得了电流型葡萄糖酶电极.讨论了溶解性媒介体Co(bpy)3(ClO4)3的浓度、溶液的pH值和温度对该电极电流响应的影响.该介体型葡萄糖传感器在优化的实验条件下,对葡萄糖表现出良好的响应特性,如响应快、重复性和稳定性好,传感器线性范围为6.0×10-6~1.1×10-4mol/L,检出限为3.0×10-6mol/L.将该电极用于人血清中葡萄糖测定,其结果与传统方法测得的结果一致.  相似文献   

3.
基于生物识别组装方法将辣根过氧化物酶(HRP)和葡萄糖氧化酶(Gox)固定在金电极表面制备了HRP/Gox双酶多层膜电极.HRP/Gox双酶电极通过Gox催化氧化葡萄糖"原位"产生过氧化氢的方式分析检测芳香胺物质.探讨了葡萄糖浓度和酶组装层数对双酶电极电流响应的影响.在优化条件下,制备的双酶电极在p-苯二胺的浓度为7.6 ~53.2 μmol/L时有良好的线性响应,灵敏度为146.04 mA·L/mol.常见的干扰物葡萄糖和抗坏血酸对该双酶电极无干扰.  相似文献   

4.
用扫描电镜分析了再生丝素(RSF)和聚乙烯醇(PVA)混合膜的形貌结构,并测定了其吸水性和机械强度,用RSF和PVA的混合材料把葡萄糖氧化酶固定在玻碳电极表面,制成电流型葡萄糖传感器,以1,4-苯醌为电子传递体,酶电极对葡萄糖有灵敏的响应,峰电流的增加与葡萄糖的浓度在10-5~10-2mol/L范围内有良好的线性关系。用此方法制成的葡萄糖传感器物理性能好,其有效寿命长达2个月以上。该酶电极对葡萄糖的响应时间小于20s.  相似文献   

5.
以聚乙烯醇缩丁醛为固定葡萄糖氧化酶 (GOD)的载体 ,将GOD附在铂丝电极上并采用高氯酸·三_2,2′_联吡啶合钴(Ⅲ)[Co(bpy)3(ClO4)3]作为电子媒介体制得了电流型葡萄糖酶电极。讨论了溶解性媒介体Co(bpy)3(ClO4)3 的浓度、溶液的 pH值和温度对该电极电流响应的影响。该介体型葡萄糖传感器在优化的实验条件下 ,对葡萄糖表现出良好的响应特性 ,如响应快、重复性和稳定性好 ,传感器线性范围为6.0×10 -6~1.1×10 -4mol/L ,检出限为3.0×10 -6mol/L。将该电极用于人血清中葡萄糖测定 ,其结果与传统方法测得的结果一致。  相似文献   

6.
聚亚甲基蓝和纳米金修饰玻碳电极的葡萄糖生物传感器   总被引:11,自引:4,他引:7  
用循环伏安法在玻碳电极上电聚合一层稳定的亚甲蓝聚合物膜,研究了这层膜在0.1mol/L磷酸缓冲溶液(pH7.0)中的电化学性质。用纳米金溶胶与聚乙烯醇缩丁醛(PVB)构成复合固酶基质,采用溶胶-凝胶法固定葡萄糖氧化酶(GOD)于亚甲蓝修饰的玻碳电极表面,制成了新型葡萄糖生物传感器。实验发现,加入纳米金后提高了酶电极对葡萄糖的电流响应,所制备的传感器具有响应快、灵敏度高、稳定性好,对葡萄糖的线性响应范围为1×10-6~3×10-3mol/L,检出限为5×10-7mol/L。并具有抗尿酸、抗坏血酸干扰的特点。  相似文献   

7.
采用纳米银-壳聚糖复合膜固定葡萄糖氧化酶,构建葡萄糖生物传感器.利用计时电流法对不同光照时间纳米银颗粒组装的酶电极响应电流进行了表征.实验结果表明,光照纳米银颗粒可以抑制葡萄糖生物传感器的响应电流;随着光照时间的延长,纳米银颗粒的抑制作用逐渐增强,当光照时间达到120min时,葡萄糖生物传感器的响应电流最小(-3.953μA/cm2).葡萄糖生物传感器响应电流的抑制可能是由纳米银颗粒表面的Ag+离子浓度及表面性能的变化引起的.  相似文献   

8.
无酶葡萄糖传感器   总被引:2,自引:0,他引:2  
利用葡萄糖在镍电极上的电化学氧化.制备了无酶葡萄糖传感器,研究了其电化学氧化机理.并测定了血清中葡萄糖的含量。在较高的pH值和570 mV的电位条件下,镍电极上产生的Ni(Ⅲ)具有氧化剂的作用,能直接氧化葡萄糖为葡萄糖酸内酯,产生的正比于葡萄糖浓度的电流响应可以定量样品中的葡萄糖含量。传感器由镍棒、铂丝对极和Ag/AgCl参比电极构成;对葡萄糖的响应时间小于1 min,进样间隔时间为3 min;对葡萄糖的电流响应范围为1.96×10~(-5)~1.80×10~(-4)mol/L,检测限为9.80×10~(-6)mol/L。传感器未使用葡萄糖氧化酶或其他生物酶,受温度的影响较小,样品中的氧对测定没有影响。在镍电极上,抗坏血酸、尿酸和多巴胺等物质不干扰血清中葡萄糖的测定。传感器用于测定血清中葡萄糖含量,相对标准偏差为4.3%。与己糖激酶法的测定结果一致。传感器制备简单,无需特殊保管,经简单处理后可重复使用。  相似文献   

9.
本文采用多孔聚碳酸酯(PC)模板在加热条件下通过溶液渗透和共沉淀制得了Al/Ni双氢氧化物纳米线,并将其修饰到玻碳电极制成无酶葡萄糖传感器。考察了该传感器在不同扫描速度时的循环伏安行为,比较了裸玻碳电极、不同修饰电极对响应电流的影响。在优化条件下进行葡萄糖检测,线性范围为2.0×10-5~1.3×10-3 mol/L,检出限可以达到5.0×10-6 mol/L。该方法快捷、灵敏、分析性能好,操作简便。可将其应用于血清中葡萄糖含量的测定。  相似文献   

10.
利用壳聚糖(CHI)溶液分散了纳米二氧化钛(nano-TiO2)和多壁碳纳米管(MWCNT),将该分散液修饰于玻碳电极表面形成纳米复合薄膜;用戊二醛为交联剂在该纳米复合层上固定了葡萄糖氧化酶(GOx),同时以二茂铁为电子媒介体构建了一种新型葡萄糖传感器。利用扫描电镜(SEM)、交流阻抗(AC)对所制备的传感器进行了表征,同时用循环伏安法(CV)和计时电流法(CA)考察了其对葡萄糖的电催化氧化性能。实验结果表明,在优化测试条件下该传感器对葡萄糖在0.5~20.0 mmol.L-1范围内有线性响应,检出限为0.2 mmol.L-1;电流达到95%的稳态时间小于5 s;此生物传感器具有良好的重现性和选择性,能有效排除抗坏血酸、尿酸等常见干扰物的影响并成功应用于饮料中葡萄糖含量的测定。  相似文献   

11.
采用表面滴涂结合循环伏安法制备了碳纳米管负载氢氧化镍修饰电极(Ni(OH)2/MWNT/CCE)。研究了该修饰电极对葡萄糖的电催化氧化性能。结果表明,该修饰电极对葡萄糖具有良好的电催化氧化活性。在优化条件下,安培法检测葡萄糖的线性范围为2.0×10-7~5.7×10-4 mol.L-1(r=0.999 9,s=2 786.5μA.(mmol.L-1)-1.cm-2)和5.7×10-4~2.7×10-3 mol.L-1(r=0.999 1,s=2 005.2μA.(mmol.L-1)-1.cm-2),检出限(3sb)为8.0×10-8 mol.L-1。该法已成功用于血清中葡萄糖含量的测定。  相似文献   

12.
利用电沉积法将纳米Pt固定在巯基丁二酰胺铜(II)自组装金电极(Au/CuL)表面, 制备了一种纳米催化电极(Au/CuL/nano Pt). 分别以扫描电子显微镜(SEM)、原子力显微镜(AFM)、光电子能谱(XPS), 表面红外光谱(FT-IR)及电化学交流阻抗(EIS)对电极表面形貌进行了表征, 并采用循环伏安法(CV)研究了它的电化学性质. 结果表明, CuL具有良好的电化学活性并对H2O2的还原具有电催化作用, 纳米Pt可以显著增强这种催化性能. 在30 ℃、0.02 mol·L-1 PBS缓冲液(pH=6.0)中检测H2O2, 在0.00125-0.16 mmol·L-1浓度范围呈现线性响应, 相关系数为0.9960(信噪比为3), 检测极限为0.3 μmol·L-1. 该电极对H2O2电流响应灵敏度高(0.312 mA·cm-2·mmol-1·L)、检测迅速(4.3 s)、稳定性好(对46 μmol·L-1和2.8 mmol·L-1的H2O2连续测10 次, 变异系数分别为3.1%和3.9%; 保存70 d后对10 μmol·L-1 H2O2的响应为初始响应的95%).  相似文献   

13.
IntroductionIn recent years chemiluminescence (CL)biosensor prepared by immobilization of a sensitivereagent such as peroxidase or oxidase onto a solidmatrix has attracted much attention due to the highsensitivity of the chemiluminescent reaction of thesensitive reagent even with a simple instrument.Generally,CL biosensors can be divided into twocategories.One consists of hydrogen peroxide sen-sors prepared by immobilizing a kind of peroxidaseonto a suitable solid support[1,2 ] ,and the immo…  相似文献   

14.
G. Göbel  T. Dietz  F. Lisdat 《Electroanalysis》2010,22(14):1581-1585
Based on an oxygen reducing electrode combining bilirubin oxidase and multiwalled carbon nanotubes modified gold (BOD‐MWCNT‐Au electrode) a bienzyme sensor is developed. Therefore the BOD‐MWCNT‐Au electrode is covalently coupled to enzymes catalysing oxygen‐consuming reactions (glucose oxidase and ascorbate oxidase) to result in a membrane‐free bienzyme electrode. The electrochemical characterisation of these bienzyme sensors reveals an enzyme substrate sensitivity down to 250 μM glucose and 100 μM ascorbate. In addition, the assembled sensor systems allow amperometric measurements in a potential range where the influence of interfering substances reacting directly at the transducing electrode is minimised. The results indicate that the BOD electrode provides a suitable platform for sensing analytes of medical and environmental interest for which oxidases of high activity are available.  相似文献   

15.
王彩娟  胡效亚 《电化学》2008,14(1):76-82
研制一种新型二氧化锰-酶修饰碳糊电极.应用直接电位法分别研究了磷酸盐底液的pH值、不同种类的粘合剂、二氧化锰修饰含量以及温度等各因素对该修饰电极测定H2O2和葡萄糖电位响应的影响.在优化实验条件(35℃,磷酸缓冲底液pH=7)下,葡萄糖检测的线性范围为2.0×10-5~5.2×10-3mol.L-1,灵敏度:36.12~34.62 mV/pG lucose,检测限:3.3×10-6mol.L-1.该电极具有良好的选择性、灵敏度、稳定性和重复性,大多数常见阴阳离子、甘露醇、丙三醇和脲不干扰测定.  相似文献   

16.
We report on a bienzyme-channeling sensor for sensing glucose without the aid of mediator. It was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOx) on a glassy carbon electrode modified with multiwalled carbon nanotubes (MWNTs). The bienzyme was cross-linked with the MWNTs by glutaraldehyde and bovine serum albumin. The MWNTs were employed to accelerate the electron transfer between immobilized HRP and electrode. Glucose was sensed by amperometric reduction of enzymatically generated H2O2 at an applied voltage of ?50 mV (vs. Ag/AgCl). Factors influencing the preparation and performance of the bienzyme electrode were investigated in detail. The biosensor exhibited a fast and linear response to glucose in the concentration range from 0.4 to 15 mM, with a detection limit of 0.4 mM. The sensor exhibited good selectivity and durability, with a long-term relative standard deviation of <5 %. Analysis of glucose-spiked human serum samples yielded recoveries between 96 and 101 %.
Figure
A novel bienzyme-channeling sensor for glucose sensing has been constructed without the aid of mediator. This biosensor was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOD) onto glass carbon electrode (GCE) modified with multiwall carbon nanotubes (MWNTs) which accelerated the electron transfer between the HRP and electrode.  相似文献   

17.
A bienzyme biosensor for the simultaneous determination of glucose and fructose was developed by coimmobilising glucose oxidase (GOD), fructose dehydrogenase (FDH), and the mediator, tetrathiafulvalene (TTF), by cross-linking with glutaraldehyde atop a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM) on a gold disk electrode (AuE). The performance of this bienzyme electrode under batch and flow injection (FI) conditions, as well as an amperometric detection in high-performance liquid chromatography (HPLC), are reported. The order of enzyme immobilisation atop the MPA-SAM affected the biosensor amperometric response in terms of sensitivity, with the immobilisation order GOD, FDH, TTF being selected. Similar analytical characteristics to those obtained with single GOD or FDH SAM-based biosensors for glucose and fructose were achieved with the bienzyme electrode, indicating that no noticeable changes in the biosensor responses to the analytes occurred as a consequence of the coimmobilisation of both enzymes on the same MPA-AuE. The suitability of the bienzyme biosensor for the analysis of real samples under flow injection conditions was tested by determining glucose in two certified serum samples. The simultaneous determination of glucose and fructose in the same sample cannot be performed without a separation step because at the detection potential used (+0.10 V), both sugars show amperometric response. Consequently, HPLC with amperometric detection at the TTF-FDH-GOD-MPA-AuE was accomplished. Glucose and fructose were simultaneously determined in honey, cola softdrink, and commercial apple juice, and the results were compared with those obtained by using other reference methods.  相似文献   

18.
本文以多壁碳纳米管(MWCNTs)和KMnO4为原料,通过直接氧化还原反应合成了一种新型MnO2-C纳米复合材料,将其滴涂在玻碳(GC)电极表面,成功制备出一种非酶型H2O2传感器。采用循环伏安法和计时电流法研究了该传感器对H2O2的电催化氧化行为。实验结果表明,与GC电极和MWCNTs修饰电极相比,该电极对H2O2氧化显示出更好的催化活性。实验对影响电极性能的各种参数,包括pH值、工作电位及MnO2-C修饰量进行了探讨。在最佳实验条件下,传感器对H2O2响应的线性范围为5.0×10-7~0.2mol·L-1,检测限(S/N=3)为1.4×10-7 mol·L-1。该传感器选材新颖,制备方法简单,重现性好,稳定性和抗干扰能力强。  相似文献   

19.
A novel nonenzymatic glucose sensor was successfully fabricated based on the Cu2O polyhedrons covered Cu foil.The Cu2O polyhedrons covered Cu foil was constructed via a facile,low-cost and larger scale producible method.The Cu2O polyhedrons covered Cu foil can be directly used as the working electrode of nonenzymatic glucose sensor,which present good stability and flexibility.The results indicated that the Cu2O polyhedrons modified Cu electrode(Cu2O/Cu electrode) showed high electrocatalytic activity for the oxidation of glucose in alkaline solution.There are two linear regions of glucose concentration for the glucose sensor based on Cu2O/Cu electrode,respectively in 10 mmol/L to 0.53 mmol/L(sensitivity:3029.33 mA(mmol/L) à1 cm à2) and in 0.53-7.53 mmol/L(sensitivity:728.67 mA(mmol/L) à1 cm à2).  相似文献   

20.
采用还原法制备了AuNPs/MWCNTs复合材料,并构建了氧化还原蛋白质的固定化和生物传感界面AuNPs/MWCNTs/GC电极.以肌红蛋白(Myoglobin,Mb)为例,研究了固定化蛋白质在AuNPs/MWCNTs/GC电极上的直接电化学.结果表明,AuNPs/MWCNTs复合材料不仅能有效地促进Mb与电极表面的直接电子转移,而且能很好地保持固定化Mb的生物催化活性.Mb/AuNPs/MWCNTs/GC电极对H2O2具有良好的电催化还原性能,其线性响应范围为1~138μmol·L-1,检测限为0.32μmol·L-1(S/N=3),并具有较低的米氏常数(0.143 mmol·L-1).该电极操作简单,响应迅速,稳定性和重现性好,有望用于蛋白质的固定化及第三代生物传感器的制备.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号