首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Perfect Echo sequence, originally proposed in the late 1980s, has recently been popularised with many applications in the field of small-molecule proton NMR spectroscopy. The Perfect Echo refocuses all homonuclear J-couplings for AX spin systems and refocuses magnetization in-phase for more complex weakly coupled spin systems, albeit with some intensity reduction. In contrast to suggestions in previous publications, spectra acquired in our laboratory showed that the Perfect Echo caused intensity distortions in strongly coupled systems where the chemical shift difference between the coupled spins was not large compared to the J-coupling. This paper reports experimental observations and theoretical analysis of strongly coupled spins to confirm the distortions are real and that they originate principally from transfer of magnetization caused by the final inversion pulse of the Perfect Echo. The intensity changes are not large, but because of them, identifications of coupling partners based on resonance intensities (“roofing”) can no longer be relied on when the Perfect Echo is used. However, theory and experiment confirm that adding an orthogonal excitation pulse at the end of the Perfect Echo greatly reduces the distortions.  相似文献   

2.
Trains of spin echoes are normally modulated by homonuclear scalar couplings. It has long been known that echo modulations are quenched when the pulse-repetition rates are much larger than the offsets of the coupling partners, because the spin systems behave as if they consisted of magnetically equivalent spins when the offsets are suppressed. This type of quenching of the echo modulations can occur when the radio-frequency (RF) pulses are ideal, that is, when they are perfectly homogeneous, properly calibrated to induce rotations through an angle, pi, and have an RF amplitude, omega(1)=-gammaB(1), that is strong compared to the largest offset, Omega(S)=omega(0S)-omega(RF), with respect to the carrier frequency. Recently, it was discovered that echo modulations can also be quenched when the RF pulses are nonideal, that is, when they are too weak to bring about an ideal rotation of the magnetization of the coupling partners, so that the effective fields associated with the RF pulses are tilted in the rotating frame. This phenomenon typically occurs when the pulse-repetition rates are much slower than the offset of the coupling partner. Under such conditions, it turns out, however, that for certain offsets, when the phase, Phi(S) (which arises from a free precession of the magnetization of the coupling partner, S, in the pulse interval, 2tau, and the pulse length, tau(pi)), approaches a multiple of 2pi, the echo modulations are restored. However, the frequencies of these echo modulations are not simply determined by the homonuclear scalar coupling, J(IS). The Fourier transforms of the echo trains (the so-called "J spectra") reveal surprising multiplet patterns, and the amplitudes of the echo modulations depend on the offsets of the coupling partners. Herein, we present a unified theory, based on an average-Hamiltonian approach, to describe these effects for two-spin systems. Experimental evidence of echo modulations in a system of two spins is presented. Experiments with three and more spins, backed up by extensive numerical simulations, will be presented elsewhere.  相似文献   

3.
对脉冲梯度场-核磁共振(PFG-NMR)中测定溶液分子自扩散系数的Stimulated echo方法进行了改进,把测定自扩散系数的Stimulated echo脉冲序列与测定自旋-晶格弛豫时间的脉冲序列串接起来,设计了两个新的脉冲序列。  相似文献   

4.
Highly resolved solid-state HETCOR NMR spectra between protons and low gamma nuclei ((13)C and (29)Si) can be suitably obtained on surfaces using a "brute force" (1)H-(1)H decoupling by MAS at rates > or =40 kHz. Despite a small rotor volume (<10 microL), a (1)H-(13)C HETCOR spectrum of allyl groups (AL, -CH(2)-CH=CH(2)) covalently anchored to the surface of MCM-41 silica was acquired without using isotope enrichment. The advantages of using fast MAS in such studies include easy setup, robustness, and the opportunity of using low RF power for decoupling. In the case of the (1)H-(29)Si HETCOR experiment, the sensitivity can be dramatically increased, in some samples by more than 1 order of magnitude, through implementing into the pulse sequence a Carr-Purcell-Meiboom-Gill train of pi pulses at the (29)Si spin frequency. The use of low-power heteronuclear decoupling is essential in the (1)H-(29)Si CPMG-HETCOR experiment, due to unusually long acquisition periods. These methods provided detailed structural characterization of the surface of AL-MCM mesoporous silica.  相似文献   

5.
Modulation phenomena that take place during electron spin echo signal decay have long been used in structural studies of free radicals and their environment. These phenomena are based on coherent dynamic effects, arising from simultaneous excitation (by microwave pulses) of two or more transitions in the EPR spectrum. Recently, a new source of stimulated electron spin echo (ESE) modulation was discovered due to spontaneous changes in the magnetic parameters of radicals during the operation of the pulse sequence. For monoradicals, these changes are caused by intramolecular motions. For radical pairs, additional mechanisms are longitudinal relaxation of spin counterparts and transformations of the paramagnetic partners during chemical reactions. Promising applications of this phenomenon to structural studies of radicals and radical pairs in solids and to investigations of their mobility and chemical transformations are considered.  相似文献   

6.
X-band echo-detected electron paramagnetic resonance (ED EPR) spectra of triplet state of fullerene C(70) generated by continuous light illumination were found to correspond below 30K to a non-equilibrium electron spin polarization. Above 30K spectra are characteristic of Boltzmann equilibrium. Spectra were simulated fairly well with zero-field splitting parameters D=153 MHz and E and distributed within the range of 6-42 MHz. The origin of E distribution is attributed to the Jahn-Teller effect, which in glassy matrix is expected to depend on the local surrounding of a fullerene molecule (a so-called E-strain). In the center of ED EPR spectra a narrow hole was observed. With increase of the microwave pulse turning angle this hole transforms into a single narrow absorptive line. Numerical simulations by density matrix formalism confirm that central hole originates from a simultaneous excitation of both allowed electron spin transitions of the triplet (T(0)?T(+) and T(0)?T(-)), because of their degeneracy at this spectral position. Also explanations are given why this hole has not been observed in the previously reported experiments on continuous wave EPR and on ED EPR under laser pulse excitation.  相似文献   

7.
The spatial ordering of aluminum atoms in CsAl(SiO3)2 and 3Al2O3.2SiO2 was probed by 27Al dipolar solid-state NMR spectroscopy. The 27Al response to a Hahn spin-echo pulse sequence in a series of aluminum-containing model crystalline compounds demonstrates that quantitative 27Al homonuclear dipolar second moments can be obtained to within +/-20% of the theoretical values, if evaluation of the spin-echo response curve is limited to short evolution periods (2t1 < or = 0.10 ms). Additionally, selective excitation of the central transition m = 1/2 --> -1/2 is necessary in order to ensure quantitative results. Restriction of spin exchange affecting the dephasing of the magnetization may decelerate the spin-echo decay at longer evolution periods. Considering these restraints, the method was used to probe the spatial distribution of aluminum atoms among the tetrahedral sites in two aluminosilicate materials. Experimental 27Al spin-echo response data for the aluminosilicates CsAl(SiO3)2 (synthetic pollucite) and 3Al2O3.2SiO2 (mullite) are compared with theoretical data based on (I) various degrees of aluminum-oxygen-aluminum bond formation among tetrahedrally coordinated aluminum atoms (Al(T(d) )-O-Al(T(d) )) and (II) the maximum avoidance of Al(T(d) )-O-Al(T(d) ) bonding. Analysis of the second moment values and resulting echo decay responses suggests that partial suppression of spin exchange among aluminum atoms in crystallographically distinct sites may contribute to the 27Al spin echo decay in 3Al2O3.2SiO2, thus complicating quantitative analysis of the data. Silicon-29 and aluminum-27 magic angle spinning (MAS) NMR spectra of 3Al2O3.2SiO2 are consistent with those previously reported. The experimental 27Al spin-echo response behavior of CsAl(SiO3)2 differs from the theoretical response behavior based on the maximum avoidance of Al-O-Al bonding between tetrahedral aluminum sites in CsAl(SiO3)2. A single unresolved resonance is observed in both the silicon-29 and aluminum-27 MAS spectra of CsAl(SiO3)2.  相似文献   

8.
A novel pulse sequence incorporating the double pulsed field gradient spin‐echo (DPFGSE) and the gradient‐tailored excitation WATERGATE techniques is presented that has particular use for identifying bound waters in 15N‐labeled macromolecules. This sequence, DPFGSE–ROESY–HSQC, affords greater spectral sensitivity than the DPFGSE–ROESY–HMQC experiment which was previously presented and is consequently useful for rapidly obtaining reliable information for characterizing macromolecular bound water molecules. A significant enhancement in the sensitivity is achieved by using the gradient‐tailored excitation WATERGATE sequence in the reverse INEPT step as it allows the use of much higher receiver gains. Since coherence selection is not used, the sequence has improved sensitivity together with less spectral artifacts. The advantage of this pulse sequence is illustrated using 15N‐labeled ribonuclease T1. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Dynamics of proteins in solutions include translational, rotational, and internal motions that are linked to different protein properties. Because most proteins are small with the sizes of just a few nanometers, the timescale for their short-time dynamics usually ranges from a few nanoseconds to a few hundreds of nanoseconds, during which a protein usually does not rotate too much. Protein short-time dynamics has been shown to be useful to study liquid theories, protein cluster formation, gelation transitions of concentrated protein systems, and protein internal motions. Neutron spin echo, which is able to measure protein motions with the right correlation time at the appropriate length scale, is ideally suitable to study the short-time dynamics of proteins in solutions. Here, we review recent activities of using neutron spin echo to study the protein short-time motions. Despite all progresses, there are still both theoretical and experimental challenges to exploit the full capability of neutron spin echo to study protein dynamics.  相似文献   

10.
A simple modification of the spin‐state‐selective excitation (S3E) pulse sequence element is proposed. The new sub‐sequence, dubbed S2ED for spin‐state echo differentiation, can be used in a very versatile way, in addition to the standard features of S3E. Experimental verifications were performed by editing α/β–HSQC–α/β spectra of nitrogen‐15‐labelled ubiquitin. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Owing to the recent developments concerning residual dipolar couplings (RDCs), the interest in methods for the accurate determination of coupling constants is renascenting. We intended to use the J-modulated ADEQUATE experiment by K?vér et al. for the measurement of (13)C - (13)C coupling constants at natural abundance. The use of adiabatic composite chirp pulses instead of the conventional 180 degrees pulses, which compensate for the offset dependence of (13)C 180 degrees pulses, led to irregularities of the line shapes in the indirect dimension causing deviations of the extracted coupling constants. This behaviour was attributed to coupling evolution, during the time of the adiabatic pulse (2 ms), in the J-modulation spin echo. The replacement of this pulse by different kinds of refocusing pulses indicated that a pair of BIPs (broadband inversion pulses), which behave only partially adiabatic, leads to correct line shapes and coupling constants conserving the good sensitivity obtained with adiabatic pulses.  相似文献   

12.
We describe three-dimensional magic-angle-spinning NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly (13)C,(15)N-labeled solids. The approaches employ transferred echo double resonance (TEDOR) for (13)C-(15)N coherence transfer and (15)N and (13)C frequency labeling for site-specific resolution, and build on several previous 3D TEDOR techniques. The novel feature of the 3D TEDOR pulse sequences presented here is that they are specifically designed to circumvent the detrimental effects of homonuclear (13)C-(13)C J-couplings on the measurement of weak (13)C-(15)N dipolar couplings. In particular, homonuclear J-couplings lead to two undesirable effects: (i) they generate anti-phase and multiple-quantum (MQ) spin coherences, which lead to spurious cross-peaks and phase-twisted lines in the 2D (15)N-(13)C correlation spectra, and thus degrade the spectral resolution and prohibit the extraction of reliable cross-peak intensities, and (ii) they significantly reduce cross-peak intensities for strongly J-coupled (13)C sites (e.g., CO and C(alpha)). The first experiment employs z-filter periods to suppress the anti-phase and MQ coherences and generates 2D spectra with purely absorptive peaks for all TEDOR mixing times. The second approach uses band-selective (13)C pulses to refocus J-couplings between (13)C spins within the selective pulse bandwidth and (13)C spins outside the bandwidth. The internuclear distances are extracted by using a simple analytical model, which accounts explicitly for multiple spin-spin couplings contributing to cross-peak buildup. The experiments are demonstrated in two U-(13)C,(15)N-labeled peptides, N-acetyl-L-Val-L-Leu (N-ac-VL) and N-formyl-L-Met-L-Leu-L-Phe (N-f-MLF), where 20 and 26 (13)C-(15)N distances up to approximately 5-6 A were measured, respectively. Of the measured distances, 10 in N-ac-VL and 13 in N-f-MLF are greater than 3 A and provide valuable structural constraints.  相似文献   

13.
Homonuclear two-dimensional J-resolved (2DJ) spectra of molecules containing strongly coupled spin systems contain additional responses and thus additional information, the responses arising from the mixing effects of the 180° pulse employed to create the spin echo upon which the experiment is based. Although additional responses due to strong coupling are generally considered to be an undesirable complication inherent to the experiment, it is shown that they can serve a useful correlation function. Total assignment of the 1H-nmr spectrum of 2-(2′-pyridyl)-1,8-naphthyridine at 100 MHz is reported, and members of the three strongly coupled spin systems of the molecule are identified via the additional responses due to strong coupling.  相似文献   

14.
Single scan longitudinal relaxation measurement experiments enable rapid estimation of the spin‐lattice relaxation time (T1) as the time series of spin relaxation is encoded spatially in the sample at different slices resulting in an order of magnitude saving in time. We consider here a single scan inversion recovery pulse sequence that incorporates a gradient echo sequence. The proposed pulse sequence provides spectra with significantly enhanced signal to noise ratio leading to an accurate estimation of T1 values. The method is applicable for measuring a range of T1 values, thus indicating the possibility of routine use of the method for several systems. A comparative study of different single scan methods currently available is presented, and the advantage of the proposed sequence is highlighted. The possibility of the use of the method for the study of cross‐correlation effects for the case of fluorine in a single shot is also demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Heteronuclear multiple quantum (n=+/-0 and n=+/-2) correlated spectroscopy revamped by asymmetric z-gradient echo detection (CRAZED) experiments were performed on the spins 31P and 1H in a H3PO4 solution in order to determine the optimum flip angle for the read pulse. It has been shown that for the negative quantum signals, the maximum signals appear at beta=0, and for the positive quantum signals, the maximum signals appear at beta=pi. The CRAZED signals were compared to the single quantum signals in two-pulse two-gradient experiments. It is found that the CRAZED signals can also be distinguished into gradient echoes and spin echoes. The gradient-echo-type CRAZED signal requires beta=0 and the spin-echo-type CRAZED signal requires beta=pi for maximum echo intensities, in the same way as in single quantum experiments.  相似文献   

16.
This review discusses the application of pulse EPR to the characterization of disordered systems, with an emphasis on samples containing transition metals. Electron nuclear double‐resonance (ENDOR), electron‐spin‐echo envelope‐modulation (ESEEM), and double electron–electron resonance (DEER) methodologies are outlined. The theory of field modulation is outlined, and its application is illustrated with DEER experiments. The simulation of powder spectra in EPR is discussed, and strategies for optimization are given. The implementation of this armory of techniques is demonstrated on a rich variety of chemical systems: several porphyrin derivatives that are found in proteins and used as model systems, otherwise highly reactive aminyl radicals stabilized with electron‐rich transition metals, and nitroxide–copper–nitroxide clusters. These examples show that multi‐frequency continuous‐wave (CW) and pulse EPR provides detailed information about disordered systems.  相似文献   

17.
Compensation of refocusing inefficiency in a gHMBC experiment by replacing the rectangular pi pulse with a pair of adiabatic pulses with synchronized inversion sweep (CRISIS) significantly improves the performance of the gHMBC experiment. The CRISIS-gHMBC experiment retains the pure absorptive shapes in F1 and hence results in better lineshape and higher resolution than the current versions of magnitude mode gHMBC spectra. When used as a broadband experiment, CRISIS-gHMBC, owing to better refocusing efficiency of the adiabatic pulse pairs, gives improved performance across the 13C spectral width. Moreover, it is shown that CRISIS-gHMBC is a robust and improved alternative and when used along with the IMPRESS (Improved Resolution using Symmetrically Shifted pulses) technique further increases the sensitivity and resolution without additional experimental time. The IMPRESS-CRISIS combination is demonstrated for broadband gHMBC and band-selective gHMBC experiments. The ICbs-gHMBC [IMPRESS-CRISIS-band-selective gHMBC] experiment is an attractive and better alternative to individual band-selective gHMBC.  相似文献   

18.
The spin probes 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), and 2,2,6,6-tetramethyl-4-trimethylammoniumpiperidine-1-oxylIodide (CAT-1) are examined in a number of ionic liquids based on substituted imidazolium cations and tetrafluoroborate and hexafluorophosphate anions, respectively. The reorientation correlation times tau(R) of the spin probes in these systems have been determined by complete spectra simulation and, for rapid reortientation, by analysis of the intensities of the hyperfine lines of the electron spin resonance (ESR) spectra. A comparison of the results with those from the model system glycerol/water and selected organic solvents is made. Additions of diamagnetic and paramagnetic ions allow the conclusion that salt effects and spin exchange are present, and that both are superimposed by motional effects. Specific interactions in the ionic liquids, as well as between the spin-probe molecules and the constituents of the ionic liquids are reflected in the spectra of the spin probes, depending on their molecular structure.  相似文献   

19.
Peak distortion caused by homonuclear 1H J‐coupling is a major problem in many spin‐echo‐based experiments such as pulsed gradient spin‐echo (PGSE) experiments. Although peak phase distortions can be lessened by the incorporation of anti‐phase purging sequences, the sensitivity is substantially decreased. Techniques for lessening the effect of homonuclear J‐coupling evolution in spin‐echo‐based experiments have been investigated. Two potentially useful candidates include a J‐compensated inversion sequence that is efficient over a wide range of J‐coupling values and a pulse sequence that refocuses homonuclear J‐evolution during the spin‐echo. The latter was found to work superbly on samples containing two spin (AX or AB) systems and still provided significant advantage over the standard method on samples containing more complicated spin systems. Implementation of this J‐refocusing technique into a PGSE‐type experiment (J‐PGSE) leads to dramatic improvement of spectra and easier data analysis. The J‐PGSE sequence should find applications in many diffusion studies where the PGSE‐type method is required and should be a viable alternative to PGSTE especially in dilute samples due to its enhanced sensitivity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Electron Paramagnetic Resonance (EPR) spectra of paramagnetic probes (free radical, 4-oxo-Tempo for non-doped glasses and vanadyl sulfate for doped silica glass) provide a non-intrusive means of monitoring of the dynamics of the sol-gel process. The free radical spectra parameters (rotation correlation time, isotropic hyperfine interaction parameter and line width) reflect changes in viscosity and polarity in the vicinity of the spin label. The EPR spectra of vanadyl can be used for monitoring the sol-gel process in that different types of mixed vanadyl complexes are formed during glass molding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号