首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Water soluble multi-wall carbon nanotubes (MWCNTs) were prepared via chemical oxidation. Under ultrasonication,the chemically treated MWCNTs can be dispersed in water to form colloids. The MWCNTs were characterized by FT-IR spectra. The FT-IR spectra reveal the presence of carboxylic groups on the nanotubes. The functional groups can improve the nanotubes-solubility in water. Alcian Blue 8GX (AB), a quaternary ammonium dye of the copper phthalocyanine group, was dissolved in water and used to form electrostaticcally self-assembled multilayer films. The MWCNT/AB composite films were characterized by UV-vis absorption spectra as well as AFM and fluorescence spectrum. The experimental results show that the MWCNT/AB composite films can be produced easily. Compared to those of the AB aqueous solutions, composite films exhibit pronounced differences in the absorption and fluorescence spectra, which suggests that AB molecules aggregated in the composite film, and that a charge transfer might exist between AB molecules and the MWCNTs.  相似文献   

2.
Two multiwalled carbon nanotube hybrids have been prepared: (a) multiwalled carbon nanotubes (MWCNTs) functionalized with amphiphilic poly(propyleneimine) dendrimer (APPI), viz. MWCNTs-APPI, and (b) silver nanoparticles (AgNPs)-deposited multiwalled carbon nanotubes functionalized with an amphiphilic poly(propyleneimine) dendrimer (MWCNTs-APPI-AgNPs). The degree of covalent functionalization of APPI in MWCNTs and deposition of AgNPs in MWCNTs-APPI were examined by Fourier transform infrared spectroscopy, zeta potential, scanning and high-resolution transmission electron microscopy, energy-dispersive spectroscopy, thermogravimetric analysis, and Raman spectroscopy. The amount of APPI functionalized on MWCNTs determined by thermal gravimetric analysis was about 67% which enables an effective dispersability in aqueous and organic solvents without sonication and these solutions were stable for 6 months without undergoing aggregation of MWCNTs. The electronic properties of the hybrid materials were not altered drastically as verified by the Raman studies. The antimicrobial activities of MWCNTs-APPI and MWCNTs-APPI-AgNPs against three different bacteria, viz. Bacillus subtilis, Staphylococcus aureus, and Escheriachia coli illustrated excellent activity.  相似文献   

3.
The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multiwalled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface, and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules.  相似文献   

4.
We report the synthesis and the characterization of different multi-walled carbon nanotubes (MWCNTs) linked to natural molecules, 5,7-coumarins and/or oleic acid, obtained from purified pristine MWCNTs by a cascade of chemical functionalization. The activities of these modified MWCNTs were investigated in vitro on human umbilical vein endothelial cells (HUVECs) by evaluating their ability to influence cell viability and to induce cell apoptosis. Our data showed that pristine MWCNTs are markedly cytotoxic; conversely, the carboxylated carbon nanotubes, much more readily dispersed in aqueous solutions and CNT-Link, the key intermediate designed by us for the drug anchorage, are biocompatible at the tested concentrations (1 and 10 μg ml(-1)).  相似文献   

5.
Multi-walled carbon nanotubes (MWCNTs) are widely applied in development of composite materials. However, their properties are directly influenced by the degree of uniformity of dispersion of MWCNTs in the material’s matrix. In this paper, the dispersing of raw MWCNTs (R-MWCNTs) and decorated MWCNTs (D-MWCNTs) was studied in aqueous solution. The D-MWCNTs were obtained by chemical modification method by treatment of initial MWCNTs with the mixture of concentrated nitric and sulfuric acids (3: 1 vol/vol). To achieve a good dispersion of the MWCNTs, a method utilizing ultrasonic processing and surfactant (polyvinylpyrrolidone, PVP) was employed. MWCNTs were characterized by Fourier transform infrared spectroscopy (FT–IR) and X-ray diffraction (XRD). The prepared MWCNTs suspensions were investigated by UV spectroscopy, zeta potential measurements, surface tension and transmission electron microscopy (TEM). The D-MWCNTs have better dispersibility in aqueous solution; this attributed to the functional groups formed on their surface during chemical modification. The PVP surfactant in a certain concentration of 0.6 g/L has the maximum dispersing effect on MWCNTs in aqueous solution, the optimum concentration ratio of PVP and MWCNTs was 3: 1.  相似文献   

6.
This work reports a feasible synthesis of highly-dispersed Pt and Pt-Fe nanoparticles supported on multiwall carbon nanotubes (MWCNTs) without Fe and multiwall carbon nanotubes with iron (MWCNTs-Fe) which applied as electrocatalysts for methanol electrooxidation. A Pt coordination complex salt was synthesized in an aqueous solution and it was used as precursor to prepare Pt/MWCNTs, Pt/MWCNTs-Fe, and Pt-Fe/MWCNTs using FeC12.4H20 as iron source which were named S 1, S2 and S3, respectively. The coordination complex of platinum (TOA)2PtC16 was obtained by the chemical reaction between (NH4)2PtC16 with tetraoctylammonium bromide (TOAB) and it was characterized by FT-IR and TGA. The materials were characterized by Raman spectroscopy, SEM, EDS, XRD, TEM and TGA. The electrocatalytic activity of Pt-based supported on MWCNTs in the methanol oxidation was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). Pt-Fe/MWCNTs electrocatalysts showed the highest electrocatalytic activity and stability among the tested electrocatalysts due to that the addition of "Fe" promotes the OH species adsorption on the electrocatalyst surface at low potentials, thus, enhancing the activity toward the methanol oxidation reaction (MOR).  相似文献   

7.
Jing L  Liang C  Shi X  Ye S  Xian Y 《The Analyst》2012,137(7):1718-1722
The attempt to decorate carbon nanotubes with organic molecules to form new functional materials has attracted broad attention in the scientific community. Here, we report the covalent functionalization of multiwalled carbon nanotubes (MWCNTs) with pyrene via Cu(I)-catalysed azide/alkyne click (CuAAC) reactions under mild conditions to afford the nanocomposites of pyrene-MWCNTs. Fourier transform infrared spectroscopy (FT-IR), ultraviolet and visible spectroscopy (UV-Vis), and fluorescence spectroscopy were used to characterize the nanocomposites of pyrene clicked MWCNTs. Experimental results indicate that the CuAAC reaction occurs in an efficient manner and the spacer linking MWCNTs and the photoactive molecule is well defined. In contrast to the noncovalent functionalization of π-π stacking, the nanocomposites of pyrene clicked MWCNTs show relatively strong fluorescence and have potential applicability in photoluminescent devices as a highly sensitive and selective fluorescence "turn-off" sensor for Fe(3+).  相似文献   

8.
A series of poly(ethylene terephthalate)/multi‐walled carbon nanotubes (PET/MWCNTs) nanocomposites were prepared by in situ polymerization using different amounts of multi‐walled carbon nanotubes (MWCNTs). The polymerization of poly(ethylene terephthalate) (PET) was carried out by the two‐stage melt polycondensation method. The intrinsic viscosity (IV) of the composites is ranged between 0.31 and 0.63 dL/g depending on the concentration of the MWCNTs. A decrease of IV was found by increasing MWCNTs content. This is due to the reactions taking place between the two components leading to branched and crosslinked macromolecules. These reactions are, mainly, responsible for thermal behavior of nanocomposites. The melting point of the nanocomposites was shifted to slightly higher temperatures by the addition till 0.55 wt % of MWCNTs while for higher concentration was reduced. The degree of crystallinity in all nanocomposites was, also, reduced by increasing MWCNTs amount. However, from crystallization temperature, it was found that MWCNTs till 1 wt % can enhance the crystallization rate of PET, whereas at higher content (2 wt %), the trend is the opposite due to the formation of crosslinked macromolecules. From the extended crystallization analysis, it was proved that MWCNTs act as nucleating agents for PET crystallization. Additionally, the crystallization mechanism due to the existence of MWCNT becomes more complicated because two mechanisms with different activation energies are taking place in the different degrees of crystallization, depending on the percentage of MWCNT. The effect of molecular weight also plays an important role. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1452–1466, 2009  相似文献   

9.
In this paper, the multiwalled carbon nanotubes (MWCNTs) were modified with chitosan (CS) by using low temperature plasma grafting technique (denoted as MWCNT-CS). The prepared MWCNTs and MWCNT-CS were characterized by SEM, TEM, FTIR and Raman spectroscopy in detail and the results suggested that CS molecules were successfully grafted on the surfaces of MWCNTs. The materials were applied as adsorbents in the removal of U(VI) ions from large volumes of aqueous solutions as a function of environmental conditions. The removal of U(VI) from aqueous solution to MWCNTs and MWCNT-CS increased with increasing pH values at pH < 7, and then decreased with increasing pH values at pH > 7. The sorption of U(VI) on MWCNTs and MWCNT-CS was strongly dependent on pH and independent of ionic strength. The sorption of U(VI) on MWCNTs and MWCNT-CS was dominated by inner-sphere surface complexation rather than by ion exchange or outer-sphere surface complexation. The surface grafted chitosan molecules can enhances U(VI) sorption on MWCNTs obviously, which was also evidenced from the XPS spectroscopy analysis. The results of high sorption capacity of U(VI) on MWCNT-CS suggest that the MWCNT-CS nanomaterial is a suitable candidate in the preconcentration of U(VI) ions from large volumes of aqueous solutions.  相似文献   

10.
Surface oxidation can alter physicochemical properties of multiwalled carbon nanotubes (MWCNTs) and influence their aqueous stabilization. Many techniques have been used to characterize the physicochemical properties and aqueous stabilization of MWCNTs. However, the relationship between the change in physicochemical property and the aqueous stabilization of MWCNTs merits more studies, and the multiple characterization techniques have not been well compared. This study systematically and comparatively investigated the effect of oxidation on the physicochemical properties and aqueous stabilization of MWCNTs using multiple analysis methods. Increased surface area, disclosed tube ends, defects on the sidewalls, disruption of the electronic structure, and removal of metal catalysts and amorphous carbon were observed for the oxidized MWCNTs (o-MWCNTs) using the multipoint Brunauer-Emmett-Teller (BET) method, transmission electron microscope observation, Raman spectroscopy, UV-Vis spectroscopy, and thermogravimetric analysis. An oxidation-time-dependent increase in oxygen content of the MWCNTs was verified by the methods of elemental analysis, mass difference calculation, and X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy, XPS, and the Boehm titration were employed to study the functionalities on the MWCNT surfaces. Despite the limitations of these techniques, the results indicated that the dramatic increase in carboxyl groups was mainly responsible for the significant increase in oxygen content after the oxidation. The dissociation of the grafted functional groups increased electronegativity of the o-MWCNTs and facilitated the aqueous stabilization of o-MWCNTs through electrostatic repulsions. The oxidation affected the UV-Vis absorbance of MWCNT suspensions. The absorbances at 800 nm of the stabilized MWCNT suspensions had a good correlation with the MWCNT concentrations and could be used to quantify the MWCNT suspensions. The findings of this work are expected to boost the research on carbon nanotubes and their environmental behaviors.  相似文献   

11.
The multi-walled carbon nanotubes (MWCNTs)-polyamidoamine (PAMAM) hybrid was prepared by covalent linkage approach, and characterized by transmission electron microscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectrometry. The PAMAM dendrimers were present on the surface of MWCNTs in high density, and the MWCNT-PAMAM hybrid exhibited good dispersibility and stability in aqueous solution. The interaction between MWCNT-PAMAM with plasmid DNA of enhanced green fluorescence protein (pEGFP-N1), intracellular trafficking of the hybrid, transfection performance and cytotoxicity to HeLa cells were evaluated in detail. We found that the MWCNT-PAMAM hybrid possessed good pEGFP-N1 immobilization ability and could efficiently delivery GFP gene into cultured HeLa cells. The surface modification of MWCNTs with PAMAM improved the transfection efficiency 2.4 and 0.9 times, and simultaneously decreased cytotoxicity by about 38%, as compared with mixed acid-treated MWCNTs and pure PAMAM dendrimers. The MWCNT-PAMAM hybrid can be considered as a new carrier for the delivery of biomolecules into mammalian cells. Therefore, this novel system may have good potential applications in biology and therapy, including gene delivery systems.  相似文献   

12.
本文以单宁酸(TA)和甲基丙烯酸缩水甘油酯(GMA)为原料,通过开环反应制备出含有双键的光敏单宁酸(pTA),并通过π-π非共价键作用使其吸附到碳纳米管上,得到pTA修饰后的具有良好分散性的光敏碳纳米管(pTA/MWCNTs)。再将该pTA/MWCNTs作为填料添加到环氧大豆油丙烯酸酯(AESO)中,通过UV光固化得到AESO-pTA/MWCNTs复合膜。利用pTA对MWCNTs进行改性,提高了MWCNTs的分散性,同时引入双键,使得pTA/MWCNTs能够参与到光固化过程中,提高了碳纳米管与AESO基质间的界面粘结力,对AESO起到了比较好的增强作用。本文还研究了pTA/MWCNTs的加入对AESO复合涂料光固化动力学及涂膜性能的影响,结果表明该pTA/MWCNTs的掺入提高了光固化AESO复合膜的力学性能,当掺入量为0.8%时,对膜的增强效果最好,与纯AESO比较,其拉伸模量提高了390%,拉伸强度提高了110%。  相似文献   

13.
This work reports a feasible synthesis of highly-dispersed Pt and Pt-Fe nanoparticles supported on multiwall carbon nanotubes (MWCNTs) without Fe and multiwall carbon nanotubes with iron (MWCNTs-Fe) which applied as electrocatalysts for methanol electrooxidation. A Pt coordination complex salt was synthesized in an aqueous solution and it was used as precursor to prepare Pt/MWCNTs, Pt/MWCNTs-Fe, and Pt-Fe/MWCNTs using FeCl2·4NH2O as iron source which were named S1, S2 and S3, respectively. The coordination complex of platinum (TOA)2PtCl6 was obtained by the chemical reaction between (NH4)2PtCl6 with tetraoctylammonium bromide (TOAB) and it was characterized by FT-IR and TGA. The materials were characterized by Raman spectroscopy, SEM, EDS, XRD, TEM and TGA. The electrocatalytic activity of Pt-based supported on MWCNTs in the methanol oxidation was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). Pt-Fe/MWCNTs electrocatalysts showed the highest electrocatalytic activity and stability among the tested electrocatalysts due to that the addition of ”Fe” promotes the OH species adsorption on the electrocatalyst surface at low potentials, thus, enhancing the activity toward the methanol oxidation reaction (MOR).  相似文献   

14.
Functionalized multiwall carbon nanotube/gold nanoparticle composites   总被引:14,自引:0,他引:14  
Multiwall carbon nanotubes (MWCNTs) were chemically oxidized in a mixture of sulfuric acid and nitric acid (3:1) while being ultrasonicated. The effect of oxidative ultrasonication at room temperature on development of functional groups on the carbon nanotubes was investigated. The dispersability and the carboxylic acid group concentration of functionalized MWCNTs (fMWNTs) varied with reaction time. The concentration of carboxylic acid groups on fMWNTs increased from 4 x 10(-4) mol/g of fMWNTs to 1.1 x 10(-3) mol/g by doubling the treatment period from 4 to 8 h. The colloidal stability of aqueous fMWCNTs dispersions was enhanced through elongated oxidation. fMWCNTs that were reacted longer than 4 h did not precipitate in aqueous media for at least 24 h. The layer-by-layer self-assembly of polyelectrolytes on fMWCNTs was characterized by zeta potential measurements. The zeta potential of fMWCNTs changed from negative charge to positive charge when cationic polyelectrolytes were self-assembled on their surface. With addition of anionic polyelectrolytes, cationic polyelectrolyte coated fMWCNTs showed the expected charge reversal as expected for multilayer self-assembly. Complex formation of positively charged gold nanoparticles and negatively charged fMWCNTs was achieved with and without polyelectrolyte coatings by electrostatic interaction. The complex formation was characterized by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The here found complex formation of positively charged colloidal gold and defect sites on fMWNTs indicates the location of functional groups on carbon nanotubes. It is suggested that positively charged colloids such as gold nanoparticles could be used for detection of defect sites on carbon nanotubes.  相似文献   

15.
This article reports an extensive investigation of the unique dispersion behavior of solutions with multi-walled carbon nanotubes (MWCNTs) and 3-hydroxy-2-napthoic acid (β-HNA) in tetrahydrofuran (THF) solvent, which results into a multifold enhancement in the electrical properties of polystyrene (PS). A number of solutions with 0.4% of MWCNTs (w/v) and β-HNA (0–1%, w/v) in THF were prepared separately. MWCNTs precipitated out in THF solvent shortly after the preparation and formed two distinct phase regions (2φ). Gratifyingly, addition of β-HNA solution to the MWCNTs solution offered an unprecedented enhancement in the dispersion of MWCNTs. Such dispersion in solutions with only 0.02% β-HNA (w/v) was found to be stable up to 2 weeks at room temperature. FTIR spectroscopy was incorporated to illustrate the adsorption of β-HNA onto the surface of carbon nanotubes (CNTs). After this successful dispersion, nanocomposites solutions comprising of 0.067% β-HNA (w/v), 6.7% PS (w/v), and varying concentrations of MWCNTs (0–0.33%, w/v) were prepared. A remarkable dispersion behavior of MWCNTs in the presence of polymer was also observed. Finally, thin films made up of consistent polystyrene/β-HNA concentrations and increasing amounts of MWCNTs were prepared by casting technique to investigate the influence of dispersion on the electrical properties of the film. The dispersion significantly affected the DC electrical conductivity and incorporation of 5% MWCNTs elevated the electrical conductivity up to 10 orders of magnitude with respect to neat PS.  相似文献   

16.
With the aim to improve the compatibility between multi-walled carbon nanotubes (MWCNTs) and nylon-6, purified MWCNTs (p-MWCNTs) were grafted successfully with glycidyl methacrylate–maleic acid in aqueous solution using a single-step radiation method. The chemical structure and morphology of grafted p-MWCNTs (g-MWCNTs) was investigated by micro-FTIR, Raman spectroscopy and transmission electron microscopy. The prepared nylon-6/g-MWCNTs composite has higher mechanical strength and heat distortion temperature due to improved dispersion and compatibility than those of nylon-6/p-MWCNTs.  相似文献   

17.
We report that oxidized multiwalled carbon nanotubes (MWCNTs) can be synchronously dispersed and functionalized in TiO2 sol via an in situ sol-gel process. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy (AFM) were used to characterize the functionalized MWCNTs. The results revealed that the hydrolysis and condensation originated from Ti(OC4H9)4 molecules favor the dispersion of MWCNTs in as-prepared TiO2 sol. Based on the strong interaction between the oxidized MWCNTs and TiO2 sol during the in situ sol-gel process, MWCNT (core)-TiOx (shell) tubular composites and TiO2 nanotubes can be obtained through filtrating, washing, and annealing of this kind of TiO2 sol containing functionalized MWCNTs, as revealed by TEM, XPS, Raman spectroscopy, and redispersion experiment. By casting the dilute dispersion of functionalized MWCNTs onto a hydrophilic Si surface, discrete and individual nanotubes can be observed by AFM.  相似文献   

18.
Huang CZ  Liao QG  Li YF 《Talanta》2008,75(1):163-166
With water-soluble anionic tetra (p-carboxyphenyl) porphyrin (TCPP) to solubilize multi-walled carbon nanotubes (MCNTs), we obtained a suspension that could be stable more than 1 week. With this TCPP/MCNTs suspension, we propose a spectrofluorometric method of DNA hybridization in this contribution. Our basic finding for this work is that the fluorescence from a dye-tagged single stranded DNA (ssDNA), which was directly added to the TCPP/MCNTs suspension, gets quenched, and the fluorescence could be remained if the dye-tagged single stranded DNA is first to be hybridized with its complementary target DNA to form a double stranded DNA (dsDNA) hybrid and added into the TCPP/MCNTs suspension. Mechanism investigations showed that the reason for the former is due to the adsorption of ssDNA on the surfaces of MCNTs, and that for the latter is due to the strong electrostatic repulsion force between the negative charge TCPP/MCNTs complexes and dsDNA. Thus, target DNA in a DNA sample and single-base mismatch in DNA sequences could be easily detected.  相似文献   

19.
A novel protocol for precisely coating individual multiwall carbon nanotubes (MWCNTs) with an ultrathin layer of polypyrrole was developed. The nanocoated MWCNTs were successfully prepared by in situ chemical deposition of polypyrrole in an aqueous suspension of MWCNTs. The coating layer was very uniform and the thickness of the layer was determined by controlling the monomer concentration used, which gave nanometer precision. The products were characterized by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, electron energy loss spectroscopy, and conductivity and current-voltage measurements. The ultrathin polypyrrole layer could electrically insulate individual MWCNTs.  相似文献   

20.
Conductive macroporous composite chitosan-carbon nanotube scaffolds   总被引:1,自引:0,他引:1  
Multiwalled carbon nanotubes (MWCNTs) were used as doping material for three-dimensional chitosan scaffolds to develop a highly conductive, porous, and biocompatible composite material. The porous and interconnected structures were formed by the process of thermally induced phase separation followed by freeze-drying applied to an aqueous solution of 1 wt % chitosan acetic acid. The porosity was characterized to be 97% by both mercury intrusion porosimetry measurements and SEM image analysis. When MWCNTs were used as a filler to introduce conductive pathways throughout the chitosan skeleton, the solubilizing hydrophobic and hydrophilic properties of chitosan established stable polymer/MWCNT solutions that yielded a homogeneous distribution of nanotubes throughout the final composite matrix. A percolation theory threshold of approximately 2.5 wt % MWCNTs was determined by measurement of the conductivity as a function of chitosan/MWCNT ratios. The powder resistivity of completely compressed scaffolds also was measured and was found to be similar for all MWCNT concentrations (0.7-0.15 Omega cm powder resistivity for MWCNTs of 0.8-5 wt %) and almost five times lower than the 20 k Omega cm value found for pure chitosan scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号