首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Understanding of the occurrence of the wave breaking, the process of the wave breaking and evolution of waves after they break in deep water is crucial to simulate the growth of wind wave in ocean. In this study, deep-water breaking waves with various spectral types, center frequencies and frequency bandwidths are generated in a wave flume based on energy focusing theory. The time series of the wave surface elevation along the flume are obtained by 22 wave probes mounted along the central line of the flume. The characteristics of deep-water wave breaking are analyzed using the spectrum analysis based on the Fast Fourier Transform (FFT). For small center frequency the maximum height of wave surface generated using the Pierson–Moskowitz (P–M) spectrum is produced and the impact of the frequency width is small in wave breaking zone. While the spectral type has a significant impact on the local wave steepness during breaking, the influence of center frequency and frequency width on the local wave steepness is very weak. The significant wave steepness changes significantly after wave breaking, but it remains stable in the upstream or the downstream of wave breaking zone. After wave breaking, the peak frequency remains stable, but the spectrally weighted wave frequency changes significantly. The relationship between the level of downshift and the incident wave steepness is approximately linear. By analyzing the energy spectra, it is found that the energy loses near high frequency of controlling frequencies range and increases near peak frequency during the wave breaking. After wave breaking, the total energy dissipates remarkably with increasing breaking intensity.  相似文献   

2.
针对深水桥梁在海洋中面对波浪的冲击问题,以某跨海斜拉桥为例,设定P-M谱为目标谱,依据Welch算法对海浪功率谱进行验证,基于以上理论采用fluent软件建立数值波浪水槽,根据重现期为10年、50年和100年分别计算对应的波高为6.4 m,7.2 m和9.6 m的波浪力,并将波浪力导入斜拉桥进行动力响应计算。综合分析大桥的动力响应, 结果表明,(1) 纵桥向波浪力是由横桥向波浪冲击桥墩出现绕射效应而产生,所以斜拉桥所受横桥向波浪力远大于纵桥向波浪力;(2) 随着波高的增大,斜拉桥的动力响应峰值逐渐增大,主跨跨中和塔顶动力响应峰值随波高的增长率最快,次边跨跨中动力响应峰值随波高的增长率次之,边跨跨中动力响应峰值随波高的增长率最慢;(3) 随着波浪荷载的增大,塔顶横向位移响应增幅显著,塔顶位移响应峰值最大达到0.0598 m。相关研究对大跨度深水桥梁的设计和动力分析有一定的参考意义。  相似文献   

3.
This paper examines impact forces resulting from wave-in-deck processes from two separate series of experiments: one with a generic solid deck model, and the other with a combined jacket and deck model, both were conducted with and without an I-beam grillage in-place below the solid deck. A range of inundation levels from 2.1 to 7.1 cm at 1:80 scale is considered. The focus is on global impact forces, which are considered more relevant for integrity assessment of overall bottom-founded structures when survivability is in question and local slamming is not addressed. The objective is to characterise the resultant impact forces as well as to investigate whether there is any interaction between the flows through the jacket and hitting the deck. Focussed wave groups were generated to impinge on the models which were suspended from a carriage over a towing tank. The motion of the support carriage mimics uniform current in-line with the incident waves. Both undisturbed surface elevations as well as impact force time histories were measured. From the first series of tests, a large increase in peak forces as well as high frequency oscillations (force spikes) is observed with the grillage in-place. As soon as the jacket model is in-place for the second series of tests, albeit with a different mounting support arrangement, such a large difference vanishes, which could likely be due to the effect of frequency-dependent transfer functions. We provide experimental evidence of the presence of the jacket in modifying the wave impact on the deck through a significant reduction in the total horizontal impulse. The effects of current on the wave impact forces are also investigated. A simple analytical model based on a momentum argument is used to describe the scaling of horizontal peak force with currents and inundation levels. Finally, the importance of the short duration force spikes as well as vertical impact loads on a real structure at full-scale is discussed based on the same analytical model.  相似文献   

4.
The seaward slope of many breakwaters consists of thousands of interlocking units of rock or concrete comprising a massive granular system of large elements each weighing tens of tonnes. The dumped quarry materials in the core are protected by progressively coarser particulates. The outer armour layer of freely placed units is intended to both dissipate wave energy and remain structurally stable as strong flows are drawn in and out of the particulate core. Design guidance on the mass and shape of these units is based on empirical equations derived from scaled physical model tests. The main failure mode for armour layers exposed to severe storms is hydraulic instability where the armour units of concrete or rock are subjected to uplift and drag forces which can in turn lead to rocking, displacement and collisions sufficient to cause breakage of units. Recently invented armour unit designs making up such granular layered system owe much of their success to the desirable emergent properties of interlock and porosity and how these combine with individual unit structural strength and inertial mass. Fundamental understanding of the forces governing such wave-structure interaction remains poor. We use discrete element and combined finite-discrete element methods to model the granular solid skeleton of randomly packed units coupled to a CFD code which resolves the wave dynamics through an interface tracking technique. The CFD code exploits several methods including a compressive advection scheme, node movement, and general mesh optimization. We provide the engineering context and report progress towards the numerical modelling of instability in these massive granular systems.  相似文献   

5.
The seaward slope of many breakwaters consists of thousands of interlocking units of rock or concrete comprising a massive granular system of large elements each weighing tens of tonnes.The dumped quarry materials in the core are protected by progressively coarser particulates.The outer armour layer of freely placed units is intended to both dissipate wave energy and remain structurally stable as strong flows are drawn in and out of the particulate core.Design guidance on the mass and shape of these units is based on empirical equations derived from sealed physical model tests.The main failure mode for armour layers exposed to severe storms is hydraulic instability where the armour units of concrete or rock are subjected to uplift and drag forces which can in turn lead to rocking,displacement and collisions sufficient to cause breakage of units.Recently invented armour unit designs making up such granular layered system owe much of their success to the desirable emergent properties of interlock and porosity and how these combine with individual unit structural strength and inertial mass. Fundamental understanding of the forces governing such wave-structure interaction remains poor.We use discrete element and combined finite-discrete element methods to model the granular solid skeleton of randomly packed units coupled to a CFD code which resolves the wave dynamics through an interface tracking technique.The CFD code exploits several methods including a compressive advection scheme, node movement, and general mesh optimization.We provide the engineering context and report progress towards the numerical modelling of instability in these massive granular systems.  相似文献   

6.
Várkonyi  Péter L.  Kocsis  Márton  Ther  Tamás 《Nonlinear dynamics》2022,107(3):1839-1858

Studies of rocking motion aim to explain the remarkable earthquake resistance of rocking structures. State-of-the-art assessment methods are mostly based on planar models, despite ongoing efforts to understand the significance of three-dimensionality. Impacts are essential components of rocking motion. We present experimental measurements of free-rocking blocks on a rigid surface, focusing on extreme sensitivity of impacts to geometric imperfections, unpredictability, and the emergence of three-dimensional motion via spontaneous symmetry breaking. These results inspire the development of new impact models of three-dimensional facet and edge impacts of polyhedral objects. Our model is a natural generalization of existing planar models based on the seminal work of George W. Housner. Model parameters are estimated empirically for rectangular blocks. Finally, new perspectives in earthquake assessment of rocking structures are discussed.

  相似文献   

7.
The foundation structure with piles and slab is widely used in offshore wind farm construction in shallow water. Experimental studies on the hydrodynamic loads acting on the piles and slab under irregular waves and currents are summarized with discussion on the effects of pile grouping on the wave forces and wave impact loads on the slab locating near the free surface. By applying the theoretical solution of the wave diffracted by the slab and using the Morison equation to evaluate the wave force on the piles, the effects of the slab on the wave forces acting on the piles are analyzed. Based on the Reynolds-averaged Navier-Stokes (RANS) equations and the volume of fluid (VOF) method, a numerical wave basin is developed to simulate the wave-structure interaction. The computed maximum wave force on the foundation structure with piles and slab agrees well with the measured data. The violent deformation, breaking, and run-up of the wave around the structure are presented and discussed. Further work on the turbulent flow structures and large deformation of the free surface due to interaction of the waves and foundation structures of offshore wind farms needs more efficient approaches for evaluating hydrodynamic loads under the effects of nonlinear waves and currents.  相似文献   

8.
Resonance is a critical consideration in the design of offshore floating structures. This paper aims at analysing the nonlinear effects of bracings and motion coupling on the resonance features of a semi-submersible platform. An improved mathematical model based on potential theory is proposed to simulate the motion response of a semi-submersible platform under irregular wave conditions, considering both the variations of hydrostatic and hydrodynamic forces induced by the bracings entering and exiting the water and the nonlinear coupling induced by the platform motions. For comparison purposes, numerical simulations are also performed using a mathematical model without considering the aforementioned effects. Validated by results of wave basin tests and numerical simulations, the proposed model performs much better in capturing the characteristic resonance features of pitch motion in low-frequency region. The nonlinear hydrostatic effect of bracings leads to the increase of resonance frequency as the motion amplitude increases, while the hydrodynamic force on the bracings and the nonlinear motion coupling only influence the amplitude of resonance spectral peak. In addition, factors influencing the nonlinear effects such as the vertical position and diameter of bracings and the pitch restoring coefficient are further investigated. It is revealed that the deviation of pitch resonance frequency has evident dependence on the ratio between nonlinear and linear volumetric variations, and an empirical formula estimating the resonance frequency is proposed using the observed dependence. Theoretically, both smaller bracing radius and larger pitch restoring coefficient are beneficial for suppressing the resonance induced by the nonlinear effects. The proposed model can be an effective tool for predicting the motion response, and the understanding of the resonance features is helpful for the design of semi-submersibles.  相似文献   

9.
戴榕菁  林缅  李家春 《力学学报》1991,23(4):491-196
本文采用十五阶 Stokes 波的 Pade 逼近,获得了与实验较为一致的流场,并且利用已有的破碎波的速度、加速度场,计算了非线性波和破碎波对各种杆件作用力,比较了它们的主要特征,为海洋工程设计提供依据。  相似文献   

10.
破碎带波浪的数值模拟   总被引:2,自引:0,他引:2  
基于一组色散关系得到改进的完全非线性Boussinesq方程建立了一个波浪模型可以模拟近岸水域的波浪变浅、破碎以及在海滩上的爬高等多种变形。波浪破碎引起的能量衰减是在动量方程中引入一个在空间和时间上都只作用于波前的涡粘项来模拟。动海岸线边界用窄缝法处理。波浪爬高用非线性浅水方程推导的非破碎波浪在斜坡上爬高的解析解来验证。本模型还模拟了波浪在斜坡上不同类型的破碎变形过程,并将其波高和平均水位的沿程变化和物理模型实验的结果比较,两者符合良好。  相似文献   

11.
In this paper, the three degrees-of-freedom motion of a two-dimensional rectangular liquid tank under wave action is simulated by the boundary element method in time domain. The coupling effects between tank motion and internal sloshing flow are investigated in partially filled conditions. The fourth-order Runge–Kutta method is adopted to update the wave shape and velocity potential on the free surface. The fully nonlinear mutual dependence of the incident wave, tank motion and internal sloshing flow is decoupled through an auxiliary function method, by which the liquid tank acceleration can be obtained directly without knowing the pressure distribution. The corresponding validation of numerical model is carried out and indicates that the accuracy of the present method is satisfactory to evaluate the dynamic responses of tank and sloshing motion. The corresponding response amplitude operators of tank motions for various wave frequencies, amplitudes and filling conditions are obtained, and the nonlinear coupling effects of sloshing flow on the tank responses are analyzed. It is found that the coupling effects have significant influence on sway and roll motion while have little impact on heave motion. The most important coupling effects on roll motion are the split of peak. In addition, due to the nonlinearity of sloshing flow, the roll motion amplitude is not linearly proportional to wave amplitude.  相似文献   

12.
通过开展不同爆距下水下爆炸对沉箱重力式码头模型毁伤效应试验,对水下荷载进行了采集分析,对毁伤因素、毁伤模式和毁伤机理开展了研究,初步讨论了爆距的影响。结果表明:试验中未形成完整的气泡脉动过程,荷载超压主要出现在冲击波传播阶段,爆炸冲击波、水底反射波和侧壁反射波是主要的毁伤因素;水下爆炸对沉箱重力式码头造成的毁伤程度大、模式多、机理复杂,主要毁伤部位为迎爆面外墙、迎爆侧管沟、封仓板和面板;爆距越近码头毁伤越严重;当爆距过近时,爆炸能量被迎爆面结构变形大量吸收,迎爆面毁伤程度大幅增大,码头其他部位毁伤程度增幅放缓。  相似文献   

13.
The rocking motion of a rigid rectangular prism on a moving base is a complex three dimensional phenomenon. Although, with very few exceptions, the previous models in the literature make the simplified assumption that this motion is planar, this is usually not true since a body will probably not be aligned with the direction of the ground motion. Thus, even in the case where the body is fully symmetric, the rocking motion involves three dimensional rotations and displacements.In this work, a three dimensional formulation is introduced for the rocking motion of a rigid rectangular prism on a deformable base. Two models are developed: the Concentrated Springs Model and the Winkler Model. Both sliding and uplift are taken into account and the fully non-linear equations of the problem are developed and solved numerically.The models developed are later used to examine the behavior of bodies subjected to general ground excitations. The contribution of phenomena neglected in previous models, such as twist, is stressed.  相似文献   

14.
建造在海洋中的结构物承受波浪、海流、风、地震等作用力,其中尤以波浪力最为重要且复杂。迄今,在小构件海洋结构物波浪力设计计算中,最普遍使用的仍然是Morison方程。但是,这里所说的Morison方程已经不是Morison等的原始方程,而是各种扩展情况下的Morison方程。当初Morison等把由粘性流体得到的阻力项和由理想流体得到的惯性力项相加即得到总波浪力,这种把同一流体既看成是粘性流体又看成是非粘性不可压缩的理想流体的做法实属自相矛盾。但是,建立Morison方程30多年以来,其改进只限于形式稍有   相似文献   

15.
Slotted breakwaters have been used to provide economical protection from waves in harbors where surface waves and currents may co-exist. In this paper, the effects of currents on the wave scattering by slotted breakwaters are investigated by using a simple model. The model is based on a long wave approximation. The effects of wave height, barrier geometry and current strength on the reflection and transmission coefficients are examined by the model. The model results are compared with recent experimental data. It is found that both the wave-following and wave-opposing currents can increase the reflection coefficient and reduce the transmission coefficient. The model can be used to study the interaction between long waves and slotted breakwaters in coastal waters. The project partially supported by the Hong Kong Research Grant Council under Grant No. HKUST-DAG03/04.EG39 and HKUST6227/04E.  相似文献   

16.
为研究漂浮式风力机平台动态响应的优化措施,提出平台附加螺旋侧板的方式。建立基于Spar平台的5MW风力机整机模型,利用有限元软件进行水动力计算,得到不同水深条件下,风力机平台在风、浪、流载荷联合作用下的频域特性,通过与不附加螺旋侧板情况下的动态特性参数对比,探讨螺旋侧板是否对结构的频响特性起到提升作用。结果表明,附加螺旋侧板后,结构的垂荡和纵摇的运动幅值和所受波浪力均得到了显著抑制;与纵荡和纵摇相比,垂荡运动的幅值和所受波浪力所受影响更显著;水深变化对结构响应的幅值有着显著影响。  相似文献   

17.
The void fraction profile and distributing mechanism of small bubbles were investigated in detail by using the Euler?CLagrange two-way model. The continuous phase is simulated by using direct numerical simulations in Euler frame of reference. Bubble trajectories are tracked by solving the Newton equations of motion with considering forces including gravity force (buoyant force), drag force, lift force, wall lift force, pressure gradient force, virtual mass force, and inertia force in Lagrange frame of reference. Results show that the void fraction profile of small bubbles exhibits double peak values, which is caused by different interphase forces dominating over bubble movements at different bubble places, and paths of bubbles are directly related to their injection places.  相似文献   

18.
Droplet motion/departure, which is governed by external force acceleration coefficient, droplet radius and surface wettability on solid surfaces under external forces such as gravitational force, play a significant role in characterizing condensation heat transfer, especially when high fractional non-condensable gases (NCG) present. However, due to the challenge in visualizing the vapor/steam velocity field imposed by droplet motion/departure, the detailed mechanism of droplet motion/departure on condensing surfaces has not been completely investigated experimentally. In this study, droplet motion/departures on solid surfaces under external forces and their interactions with steam flow are simulated using two dimensional (2D) multiphase lattice Boltzmann method (LBM). Large external force acceleration coefficient, droplet radius and contact angle, lead to large droplet deformation and high motion/departure velocity, which significantly shortens the droplet residual time on the solid surface. Our simulation shows that steam vortices (lateral velocity) induced by droplet motion/departure can greatly disturb the vapor flow and would be intensified by increasing external force acceleration coefficient, droplet radius, and contact angle. In addition, the location of vortex center shifts in the ascending direction with increase of these factors. The average lateral velocities induced by droplet motion/departure at various conditions are obtained. The mass transfer resistance is substantially reduced owing to the droplet motion/departure, leading to an enhanced heat flux. The experimental results are compared to validate the influence of droplet motion/departure on condensation heat transfer performance, especially for steam–air mixture with the presence of high fractional NCG.  相似文献   

19.
Small mass impacts on composite structures are common cases caused by hailstones and runway debris. Small mass impactors usually result in a wave controlled local response, which is independent of boundary conditions. This response occurs before the reflection of waves from the boundaries and cannot be modeled by large mass drop weight tests. An elasto-plastic contact law, which accounts for permanent indentation and damage effects, was used here to study small mass impact on laminated composite plates. By comparing with results from the Hertzian contact law, it was found that damage can change the dynamic response of the structure significantly with increasing impact velocity. Due to smaller contact force generated for the case of using elasto-plastic contact, the central displacement of the plate is also less than the one using Hertzian contact law. The linearized version of the contact law was then used to derive the closed-form approximations of the contact force, indentation and plate central displacement for the impact loading of composite laminates. The threshold velocity for delamination onset under small mass impact was predicted analytically based on the obtained peak contact forces by combining with an existing quasi-static delamination threshold load criterion. A good agreement was found between the predicted threshold values and published experimental results.  相似文献   

20.
张崇伟  宁德志 《力学学报》2019,51(6):1650-1665
对于带有多个晃荡液舱的浮式结构物, 浮体的运动、外场水动力以及各舱内的液体晃荡力会实时相互决定, 发生复杂的耦合作用. 为准确模拟多液舱浮式结构物的运动, 本文引入一种有效的时域解耦算法. 该方法以模态分解法为基础, 通过对浮式结构物所受外域水动力和各液舱内非线性晃荡力进行模态分解, 最终形成时域解耦运动方程, 无需迭代求解过程即可显式计算浮式结构物的瞬时加速度. 该方法可避免传统迭代求解方法在迭代次数、截断误差和收敛特性等方面的不足, 减少解耦过程的计算耗时. 本文进一步结合边界元数值方法, 分别对单液舱浮式结构物和多液舱浮式结构物的工况开展数值模拟研究. 通过与单液舱浮式结构物的实验结果对比, 验证了本文时域解耦算法的有效性. 本文详细分析了晃荡力对单液舱浮式结构物运动的影响, 发现存在一个共振影响区间: 当外场波浪频率在该区间之外时, 可以在时域计算结果中观察到稳定的浮体运动; 在比该区间更低频的波况下, 液舱晃荡力与外场波浪力相位相反甚至可以相互抵消, 此时晃荡液舱的存在可以减弱浮体运动; 在比该区间更高频的波况下, 液舱内晃荡力与外场波浪力可以具有相同相位, 此时晃荡液舱的存在会加剧浮体的运动. 本文进一步研究了四液舱浮式结构物在波浪中的纵荡、垂荡和纵摇运动情况, 发现非线性液舱晃荡可对纵荡和纵摇运动产生影响, 但对垂荡运动影响很小.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号