首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of mono and binuclear Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), La(III), Ru(III), Hf(IV), ZrO(II) and UO(2)(II) complexes of phenylaminodibenzoylhydrazone have been synthesized and characterized by elementals analyses, IR UV-vis spectra, magnetic moments, conductances, thermal analyses (DTA and TGA) and electron spin resonance (ESR) measurements. The IR spectral data show that, the ligand behaves as a neutral bidentate type (15 and 16), monobasic bidentate type (6), or monobasic tridentate type (5, 7, 8, 10, 11, 13, 14, 17-21) or dibasic tridentate type 2-4, 9 and 12 towards the metal ion. Molar conductances in DMF solution indicate that, the complexes are non-electrolytes. The ESR spectra of solid complexes (9 and 10) show axial and non-axial types indicating a [Formula: see text] ground state with significant covalent bond character. However, complexes (11 and 12), show isotropic type, indicating manganese(II) octahedral geometry. Antibacterial and antifungal tests of the ligand and its metal complexes are also carried out and it has been observed that the complexes are more potent bactericides and fungicides than the ligand.  相似文献   

2.
The synthesis of 2,2'-dihydroxy-3,3'-di(carboxymethyl)-1,1'-binaphthyl (H2L) and its novel metal complexes with Co(II), Ni(II), Fe(III) and Th(IV) salts are reported. The ligand and its metal complexes have been characterized on the basis of analytical, conductance, spectral (IR, UV-vis, 1H NMR, mass) and magnetic susceptibility measurements. The M?ssbauer spectrum of the Fe(III) complex indicates a low-spin octahedral geometry around the Fe(III) ion. The IR and 1H NMR spectral data show that the ligand behaves in a dibasic bidentate fashion coordinating to two metal atoms through the two deprotonated naphthyl OH groups and acts in a dibasic tetradentate manner using both carbonyl oxygen's and the deprotonated naphthyl OH groups coordinating to two metal ions. Thermal studies (TGA, DTA) confirm the presence of solvents either inside or outside the coordination sphere and support the mechanism of the decomposition process. The value of [alpha]D20 for the ligand has been determined in DMSO.  相似文献   

3.
End-off compartmental pentadentate Schiff base, 2,6-bis[3′-methyl-2′-carboxamidyliminomethyl(6′,7′)benzindole]-4-methylphenol is synthesized and characterized by 2D NMR experiments and mass spectral techniques. The homodinuclear phenalato bridged end-off compartmental Schiff-base complexes Cu(II), Co(II), Ni(II), Mn(II), Fe(III), VO(IV), Zn(II), Cd(II) and Hg(II) have been prepared by the template method using the precursors 2,6-diformyl-4-methylphenol, 3-methyl(6′,7′)-2-benzindolehydrazide and metal chlorides in 1?:?2?:?2 ratio. The complexes are characterized by IR, NMR, UV-vis, FAB-mass, ESR and TGA techniques. Ni(II), Mn(II) and Fe(III) complexes have octahedral geometry, whereas the Cu(II), Co(II), VO(IV), Zn(II), Cd(II) and Hg(II) complexes have square pyramidal geometry. Low magnetic moment values for Cu(II), Co(II), Ni(II), Mn(II), Fe(III) and VO(IV) complexes indicate antiferromagnetic spin-exchange interaction between two metal centers. The metal complexes have been screened for their antibacterial activity against Escherichia coli and Staphyloccocus aureus and antifungal activity against Aspergillus niger and Fusarium oxysporum.  相似文献   

4.
N-(thiophen-2-ylmethylene)benzo[d]thiazol-2-amine Schiff base (L) derived from 2-aminobenzothiazole and 2-thiophenecarboxaldehyde was synthesized and characterized using elemental analysis, IR, mass spectra, (1)H NMR and UV-vis spectra. Its complexes with Cu(II), Fe(III), Ni(II) and Zn(II) were prepared and isolated as solid products and characterized by elemental and thermal analyses, spectral techniques as well as magnetic susceptibility. The IR spectra showed that the Schiff base under investigation behaves as bidentate ligand. The UV-vis spectra and magnetic moment data suggested octahedral geometry around Cu(II) and Fe(III) and tetrahedral geometry around Ni(II) and Zn(II). In view of the biological activity of the Schiff base and its complexes, it has been observed that the antimicrobial activity of the Schiff base increased on complexation with the metal ion. In vitro antitumor activity assayed against five human tumor cell lines furnished the significant toxicities of the Schiff base and its complexes.  相似文献   

5.
Complexes of Cr(III), Co(II), Ni(II) and Cu(II) containing a novel macrocyclic tetradentate nitrogen donor (N4) ligand prepared via reaction of 2,3-hexanedione and ethylenediamine has been prepared and characterized. The newly synthesized ligand (L) and its complexes have been characterized on the basis of elemental analysis, molar conductance, magnetic moment susceptibility, EI-Mass, IR, Electronic and EPR spectral studies. The complexes are of high-spin type and four coordinated tetrahedral, five coordinated square pyramidal and six coordinated octahedral/tetragonal geometries. The ligand (L) and its soluble transition metal complexes have also been screened against different bacteria and plant pathogenic fungi in vitro.  相似文献   

6.
The Schiff base ligand 4-methyl-2-pentanone thiosemicarbazone (MPTSC) (HL) has been synthesized by the interaction of 4-methyl-2-pentanone (MP) and thiosemicarbazone (TSC). The Ni(II), Cu(II), and Fe(III) binary complexes of this ligand have been prepared. The ternary complexes of VO(IV) and Mn(II) ions with HL and glutamine (Glu) as a secondary ligand, in addition to VO(IV), Mn(II), and La(III) with HL and glycine (Gly) as a secondary ligand, have also been synthesized. The binary and ternary complexes have been characterized based on elemental analysis, IR, UV-VIS, molar conductance, mass spectra, magnetic moment, and ESR measurements. The magnetic moment, UV, and ESR studies suggest that Ni(II) and Cu(II) complexes are square planar, whereas Fe(III), Mn(II), and La(III) complexes have octahedral geometry, but VO(IV) ternary complexes have square pyramidal geometry. The analytical data indicate that the metal-to-ligand ratio in binary complexes is 1:1, except HL-Cu(II) chloride complex where the metal-to-ligand to secondary ligand ratio in ternary complexes is 1:1:1. The anticancer studies showed that the anticancer activity is in the decreasing order: ternary complexes > binary complexes > free ligand (HL).

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

7.
Electron-transfer series are described for three ferric complexes of the pentadentate ligand 4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane-1-acetate (Me(3)cyclam-acetate) with axial chloride, fluoride, and azide ligands. These complexes can all be reduced coulometrically to their Fe(II) analogs and oxidized reversibly to the corresponding Fe(IV) species. The Fe(II), Fe(III), and Fe(IV) species have been studied spectroscopically and their UV-vis, M?ssbauer, EPR, and IR spectra are presented. The fluoro species [(Me(3)cyclam-acetate)FeF](n+) (n = 0, 1, 2) have been studied computationally using density functional theory (DFT), and the electronic structure of the Fe(IV) dication [(Me(3)cyclam-acetate)FeF](2+) is compared with that of the isoelectronic Fe(IV) oxo cation [(Me(3)cyclam-acetate)FeO](+); the different properties of the two species are mainly due to the significantly covalent Fe=O pi bonds in the latter.  相似文献   

8.
In this study, Seven new complexes incorporating (E)-2-(((5-([2-hydroxyphenoxy]methyl)furan-2-yl)methylene)amino)phenol derived from 2-hydroxyphenoxymethylfuran-5-carbaldehyde and 2-aminophenol have been synthesized using Cu(II), Cr(III), Fe(III), Ni(II), Co(II), Zn(II), and Pt(IV) metal salts. Thermal measurements, molar conductance, magnetic moment, elemental analyses, spectral (IR, UV–Vis, 1H nuclear magnetic resonance (NMR), ESR, Mass), were used to characterize insulated solid complexes. The thermogravimetry (TG) and differential thermoanalysis (DTA) of the complexes were carried out in the range of 30–900°C. Magnetic susceptibility and electronic spectral data, as well as quantum chemical calculations, reveal the square planar geometry for Ni (II) complex, square planar/octahedral geometry for Cu (II) complex, while Co(II), Zn(II), Cr(III), Fe(III), and Pt (IV) complexes are octahedral geometry. Density functional theory (DFT) studies revealed that geometries of metal complexes and Schiff base were entirely optimized in relation to use energy by 6–31 + g (d,p) basis set. The complexes show a well-defined crystal system indicated by a powder-X-ray diffraction pattern. The scanning electron microscope showed complexes were nanocrystalline in nature, in addition to the interaction of the complexes with calf thymus CT-DNA, which was investigated via the UV–visible absorption method. Therefore, the DNA cleavage activity by the H2L ligand and its metal complexes was performed. Finally, the synthesized complexes were tested for their in-vitro antimicrobial efficacy.  相似文献   

9.
We report the generation and characterization of a new high-spin iron(IV)-oxo complex supported by a trigonal nonheme pyrrolide platform. Oxygen-atom transfer to [(tpa(Mes))Fe(II)](-) (tpa(Ar) = tris(5-arylpyrrol-2-ylmethyl)amine) in acetonitrile solution affords the Fe(III)-alkoxide product [(tpa(Mes2MesO))Fe(III)](-) resulting from intramolecular C-H oxidation with no observable ferryl intermediates. In contrast, treatment of the phenyl derivative [(tpa(Ph))Fe(II)](-) with trimethylamine N-oxide in acetonitrile solution produces the iron(IV)-oxo complex [(tpa(Ph))Fe(IV)(O)](-) that has been characterized by a suite of techniques, including mass spectrometry as well as UV-vis, FTIR, M?ssbauer, XAS, and parallel-mode EPR spectroscopies. Mass spectral, FTIR, and optical absorption studies provide signatures for the iron-oxo chromophore, and M?ssbauer and XAS measurements establish the presence of an Fe(IV) center. Moreover, the Fe(IV)-oxo species gives parallel-mode EPR features indicative of a high-spin, S = 2 system. Preliminary reactivity studies show that the high-spin ferryl tpa(Ph) complex is capable of mediating intermolecular C-H oxidation as well as oxygen-atom transfer chemistry.  相似文献   

10.
Chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), ruthenium(III), iridium(III), palladium(II) and platinum(II) complexes were synthesized with a 12-membered 1,4,7,10-tetraazadodeca-5,6,11,12-tetraene macrocylic ligand (L) and characterized by elemental analysis, molar conductance, magnetic susceptibility, IR, electronic, EPR and M?ssbauer [Fe(III)] spectral studies. The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature for M(L)Cl2 complexes [where M=Mn(II), Co(II), Ni(II), Cu(II)], 1:1 electrolytes for M'(L)Cl3 complexes [where M'=Cr(III), Fe(III), Ru(III) and Ir(III)] and 1:2 electrolytes for M'(L)Cl2 complexes [where M'=Pd(II) and Pt(II)]. Thus, the complexes may be formulated as [M(L)C1(2)], [M'(L)C1(2)]C1 and [M'(L)]C1(2), respectively [where L=ligand]. All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Pd(II) and Pt(II) complexes which were four coordinate, square planar and diamagnetic.  相似文献   

11.
Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex [Fe(IV)(O)(TMG(3)tren)](2+) (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG(3)tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [Fe(IV)(CN)(TMG(3)tren)](3+) (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [Fe(II)(CN)(TMG(3)tren)](+) (2), via the S = 5/2 complex [Fe(III)(CN)(TMG(3)tren)](2+) (3), the progress of which was conveniently monitored by using UV-vis spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), Mo?ssbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an Fe(IV/III) reduction potential of ~1.4 V vs Fc(+/o), the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t(1/2) in CD(3)CN solution containing 0.1 M KPF(6) at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to (13)C NMR at -40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG(3)tren ligand to support highly charged high-valent complexes.  相似文献   

12.
Four new trinuclear Fe(III) and Cr(III) complexes involving tetradenta Schiff bases N,N′-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(saloph H2) with 2,4,6-tris(4-nitrophenylimino-4′-formylphenoxy)-1,3,5-triazine (TNPI-TRIPOD) have been synthesized and characterized by means of elemental analysis carrying out 1H-NMR., IR spectroscopy, thermal analyses and magnetic susceptibility measurements. The complexes can also be characterized as high-spin distorted octahedral Fe(III) and Cr(III) bridged by nitro. The nitro play a role as bridges for weak anti-ferromagnetic intramolecular exchange.  相似文献   

13.
The complexes of Cr(III), Mn(II), Fe(III) and Cu(II) were synthesized with the macrocyclic ligand i.e. 2,3,9,10-tetraketo-1,4,8,11-tetraazacyclotetradecane. The ligand was prepared by the [2 + 2] condensation reaction of diethyloxalate and 1,3-diamino propane. These complexes were found to have the general composition M(L)X3 and M'(L)X2 [where M = Mn(II) and Cu(II), M' = Cr(III) and Fe(III), L = ligand (N4) and X = Cl-, NO3-, 1/2SO4(2-) and [CH3COO-]. The ligand and its transition metal complexes were characterized by the elemental analyses, molar conductance, magnetic susceptibility, mass, IR, electronic, and EPR spectral studies. On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Cr(III), Mn(II) and Fe(III) and a tetragonal geometry for Cu(II) complexes.  相似文献   

14.
A series of complexes of the type [M(L)(dppe)X2]; where M=Zn(II) or Cd(II); L=4-(2'-thiazolylazo)chlorobenzene (L1), 4-(2'-thiazolylazo)bromobenzene (L2) and 4-(2'-thiazolylazo) iodobenzene (L3); dppe=1,2-bis(diphenylphosphino)ethane; X=N3- or NCS- have been prepared and characterized on the basis of their microanalysis, molar conductance, thermal, IR, UV-vis and 1H NMR spectral studies. IR spectra show that the ligand L is coordinated to the metal atom in bidentate manner via azo nitrogen and thiazole nitrogen. An octahedral structure is proposed for all the complexes. The thermal behavior of the complexes revealed that the thiocyanato complexes are thermally more stable than the azido complexes. All the complexes exhibit blue-green emission with high quantum yield as the result of the fluorescence from the intraligand emission excited state.  相似文献   

15.
To model the heterodinuclear active sites in plant purple acid phosphatases, a mononuclear synthon, [Fe(III)(H(2)IPCPMP)(Cl(2))][PF(6)] (1), has been generated in situ from the ligand 2-(N-isopropyl-N-((2-pyridyl)methyl)aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)amino methyl)-4-methylphenol (IPCPMP) and used to synthesize heterodinuclear complexes of the formulas [Fe(III)M(II)(IPCPMP)(OAc)(2)(CH(3)OH)][PF(6)] (M = Zn (2), Co (3), Ni (4), Mn (5)), [Fe(III)Zn(II)(IPCPMP)(mpdp)][PF(6)] (6) (mpdp = meta-phenylene-dipropionate), and [Fe(III)Cu(II)(IPCPMP) (OAc)}(2)(μ-O)][PF(6)] (7). Complexes 2-4, 6, and 7 have been crystallographically characterized. The structure of 6 is a solid state coordination polymer with heterodinuclear monomeric units, and 7 is a tetranuclear complex consisting of two heterodinuclear phenolate-bridged Fe(III)Cu(II) units bridged through a μ-oxido group between the two Fe(III) ions. Mo?ssbauer spectra confirm the presence of high spin Fe(III) in an octahedral environment for 1, 3, and 5 while 2 and 4 display relaxation effects. Magnetic susceptibility measurements indicate weak antiferromagnetic coupling for 3, 4, and 5 and confirm the assignment of the metal centers in 2-5 as high spin Fe(III)-M(II) (M = Zn, Co (high spin), Ni (high spin), Mn (high spin)). Complexes 2-5 are intact in acetonitrile solution as indicated by IR spectroscopy (for 2-4) and electrospray ionization mass spectrometry (ESI-MS) but partly dissociate to hydroxide species and a mononuclear complex in water/acetonitrile solutions. UV-vis spectroscopy reveal pH-dependent behavior, and species that form upon increasing the pH have been assigned to μ-hydroxido-bridged Fe(III)M(II) complexes for 2-5 although 2 and 3 is further transformed into what is propsed to be a μ-oxido-bridged tetranuclear complex similar to 7. Complexes 2-5 enhance phosphodiester cleavage of 2-hydroxy-propyl-p-nitrophenyl phosphate (HPNP) and bis(2,4-dinitrophenyl)phosphate (BDNPP), but the reactivities are different for different complexes and generally show strong pH dependence.  相似文献   

16.
A new series of transition metal complexes of Schiff base isonicotinic acid (2-hydroxybenzylidene)hydrazide, HL, have been synthesized. The Schiff base reacted with Cu(II), Ni(II), Co(II), Mn(II), Fe(III) and UO2(II) ions as monobasic tridentate ligand to yield mononuclear complexes of 1:2 (metal:ligand) except that of Cu(II) which form complex of 1:1 (metal:ligand). The ligand and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square planar geometry distorted towards tetrahedral. While, the UO2(II) complex has its favour hepta-coordination. The ligand and its metal complexes were tested against one strain Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and Fungi (Candida albicans). The tested compounds exhibited higher antibacterial activities.  相似文献   

17.
Two series of new binuclear complexes with Schiff base ligands, H(4)L(a) or H(2)L(b), derived from the reaction of 4,6-diacetylresorcinol and ethylenediamine, in the molar ratio 1:1 and 1:2 have been prepared, respectively. The two ligands react with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Cr(III) and Fe(III)-nitrates to get binuclear complexes. The ligands were characterized by elemental analysis, IR, UV-vis, (1)H NMR and mass spectra. The complexes were synthesized by direct and template methods. Different types of products were obtained for the same ligand and metal salts according to the method of preparation. The H(4)L(a) ligand behaves as a macrocyclic tetrabasic with two N(2)O(2) sits, while the H(2)L(b) ligand behaves as a dibasic with two N(2)O sites. The H(4)L(a) ligand is a compartmental ligand which hosts the two metal ions at the centers of two cis-N(2)O(2) sites, while the metal complexes of H(2)L(b) ligand are binuclear, where the ligand hosts two metal ions at the centers of two N(2)O sites. In both cases, deprotonation of the hydrogen atoms of the phenolic OH groups occur except in the case of the Ni(II), Fe(III) and Cr(III) complexes. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either octahedral or tetrahedral. The structures are consistent with the IR, UV-vis, ESR, (1)H NMR, mass spectra, and thermal gravimetric analysis (TGA/DTA) as well as conductivity and magnetic moment measurements.  相似文献   

18.
The transition metal complex of Mn(II), Co(II), Ni(II), Cu(II), Ti(III), Cr(III), Fe(III), Zr(IV), and UO2(VI) ion with a Schiff’s base ligand derived from 2-hydroxy-[2-oxo-1,2-dihydro-3H-indol-3-ylidene]-benzohydrazide have been prepared. The complexes have been characterized by elemental analysis data, IR and electronic absorption spectra, magnetic moments, and thermogravimetric analysis data. The complexes of the 1: 1 metal-to-ligand stoichiometry have been formed. The physico-chemical data have suggested the octahedral geometry for all the complexes except for Cu(II); the Cu(II) complex has been square planar. Thermal analysis data of the ligand and its complexes have been analyzed, and the kinetic parameters have been determined using the Horowitz–Metzger method. According to the solid-state electrical conductivity measurements, the ligand and its complexes are semiconducting in nature. The antimicrobial activity of the ligand and the complexes towards E. coli, S. typhi, P. aeruginosa, and S. aureus has been tested by the disc diffusion method.  相似文献   

19.
Schiff base (L) ligand is prepared via condensation of pyridine-2,6-dicarboxaldehyde with -2-aminopyridine. The ligand and its metal complexes are characterized based on elemental analysis, mass, IR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes. IR spectra shows that L ligand behaves as neutral tridentate ligand and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II), Ni(II), Cu(II), and Th(IV)) and tetrahedral (Mn(II), Cd(II), Zn(II), and UO2(II)). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also was screened for its antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data shows that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

20.
This paper deals with the synthesis, magnetic, spectral, thermal, and biological studies of Ti(III), VO(IV), Cr(III), Mn(III), Fe(III), and Zr(IV) complexes with chelating hydrazone derived from 2-hydroxy-5-methylacetophenone and furoic acid hydrazide. The acid hydrazone synthesized is 2-hydroxy-5-methylace-tophenone-furoylhydrazone. The ligand has been characterized on the basis of IR and 1H NMR spectra. The presence of water molecules and thermal stabilities of the complexes are also reported. Solid-state electrical conductivity was measured over a 313–410-K temperature range, and the compounds show semiconducting behavior. The new complexes have been screened for their antibacterial and antifungal activity, and they show higher activity than free ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号